

Single-molecule FRET burst analysis

 Python Module Index

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fretbursts	

 	
 	
 fretbursts.background	

 	
 	
 fretbursts.burst_plot	

 	
 	
 fretbursts.burstlib	

 	
 	
 fretbursts.burstlib_ext	

 	
 	
 fretbursts.dataload	

 	
 	
 fretbursts.fit	

 	
 	
 fretbursts.fit.exp_fitting	

 	
 	
 fretbursts.fit.gaussian_fitting	

 	
 	
 fretbursts.fret_fit	

 	
 	
 fretbursts.fretmath	

 	
 	
 fretbursts.loader	

 	
 	
 fretbursts.mfit	

 	
 	
 fretbursts.ph_sel	

 	
 	
 fretbursts.phtools	

 	
 	
 fretbursts.phtools.burstsearch	

 	
 	
 fretbursts.phtools.phrates	

 	
 	
 fretbursts.select_bursts	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	A_em (fretbursts.burstlib.Data attribute)

 	alex_apply_period() (in module fretbursts.loader)

 	alex_jointplot() (in module fretbursts.burst_plot)

 	
 	alex_period (fretbursts.burstlib.Data attribute)

 	and_gate() (fretbursts.phtools.burstsearch.Bursts method)

 	asym_gaussian() (in module fretbursts.mfit)

 	asymmetry() (in module fretbursts.burstlib_ext)

B

 	
 	background_correction() (fretbursts.burstlib.Data method)

 	bg (fretbursts.burstlib.Data attribute)

 	bg_bs (fretbursts.burstlib.Data attribute)

 	bg_fun (fretbursts.burstlib.Data attribute)

 	bg_mean (fretbursts.burstlib.Data attribute)

 	bg_ph_sel (fretbursts.burstlib.Data attribute)

 	bound_check() (in module fretbursts.fit.gaussian_fitting)

 	bp (fretbursts.burstlib.Data attribute)

 	bridge_function() (in module fretbursts.mfit)

 	brightness() (in module fretbursts.select_bursts)

 	bsearch_py() (in module fretbursts.phtools.burstsearch)

 	
 	Burst (class in fretbursts.phtools.burstsearch)

 	burst_data() (in module fretbursts.burstlib_ext)

 	burst_data_period_mean() (in module fretbursts.burstlib_ext)

 	burst_search() (fretbursts.burstlib.Data method)

 	burst_search_and_gate() (in module fretbursts.burstlib_ext)

 	burst_sizes() (fretbursts.burstlib.Data method)

 	burst_sizes_ich() (fretbursts.burstlib.Data method)

 	burst_sizes_pax_ich() (fretbursts.burstlib.Data method)

 	burst_widths (fretbursts.burstlib.Data attribute)

 	Bursts (class in fretbursts.phtools.burstsearch)

 	bursts_fitter() (in module fretbursts.burstlib_ext)

 	BurstsGap (class in fretbursts.phtools.burstsearch)

C

 	
 	calc_bg() (fretbursts.burstlib.Data method)

 	calc_bg_brute() (in module fretbursts.burstlib_ext)

 	calc_bg_brute_cache() (in module fretbursts.burstlib_ext)

 	calc_fret() (fretbursts.burstlib.Data method)

 	calc_kde() (fretbursts.mfit.MultiFitter method)

 	calc_max_rate() (fretbursts.burstlib.Data method)

 	calc_mdelays_hist() (in module fretbursts.burstlib_ext)

 	calc_mean_lifetime() (in module fretbursts.burstlib_ext)

 	calc_ph_num() (fretbursts.burstlib.Data method)

 	calc_sbr() (fretbursts.burstlib.Data method)

 	
 	chi_ch (fretbursts.burstlib.Data attribute)

 	clk_p (fretbursts.burstlib.Data attribute)

 	consecutive() (in module fretbursts.select_bursts)

 	copy() (fretbursts.burstlib.Data method)

 	(fretbursts.phtools.burstsearch.Bursts method)

 	correct_E_gamma_leak_dir() (in module fretbursts.fretmath)

 	correct_S() (in module fretbursts.fretmath)

 	count_ph_in_bursts() (in module fretbursts.phtools.burstsearch)

 	counts (fretbursts.phtools.burstsearch.Burst attribute)

 	(fretbursts.phtools.burstsearch.Bursts attribute)

 	(fretbursts.phtools.burstsearch.BurstsGap attribute)

D

 	
 	D_em (fretbursts.burstlib.Data attribute)

 	Data (class in fretbursts.burstlib), [1], [2], [3], [4], [5], [6], [7]

 	dataframe (fretbursts.phtools.burstsearch.Bursts attribute)

 	
 	dir_ex (fretbursts.burstlib.Data attribute)

 	dir_ex_correct_E() (in module fretbursts.fretmath)

 	dir_ex_uncorrect_E() (in module fretbursts.fretmath)

 	dither() (fretbursts.burstlib.Data method)

E

 	
 	E (fretbursts.burstlib.Data attribute)

 	E() (in module fretbursts.select_bursts)

 	empty() (fretbursts.phtools.burstsearch.Bursts class method)

 	ES() (in module fretbursts.select_bursts)

 	ES_ellips() (in module fretbursts.select_bursts)

 	ES_rect() (in module fretbursts.select_bursts)

 	
 	exp_cdf_fit() (in module fretbursts.background)

 	exp_fit() (in module fretbursts.background)

 	exp_hist_fit() (in module fretbursts.background)

 	expand() (fretbursts.burstlib.Data method)

 	expon_fit() (in module fretbursts.fit.exp_fitting), [1]

 	expon_fit_cdf() (in module fretbursts.fit.exp_fitting), [1]

 	expon_fit_hist() (in module fretbursts.fit.exp_fitting), [1]

F

 	
 	F (fretbursts.burstlib.Data attribute)

 	factory_asym_gaussian() (in module fretbursts.mfit)

 	factory_gaussian() (in module fretbursts.mfit)

 	factory_three_gaussians() (in module fretbursts.mfit)

 	factory_two_asym_gaussians() (in module fretbursts.mfit)

 	factory_two_gaussians() (in module fretbursts.mfit)

 	find_kde_max() (fretbursts.mfit.MultiFitter method)

 	fit_bursts_kde_peak() (in module fretbursts.burstlib_ext)

 	fit_E_binom() (in module fretbursts.fret_fit)

 	fit_E_cdf() (in module fretbursts.fret_fit)

 	fit_E_E_size() (in module fretbursts.fret_fit)

 	fit_E_generic() (fretbursts.burstlib.Data method)

 	fit_E_hist() (in module fretbursts.fret_fit)

 	fit_E_m() (fretbursts.burstlib.Data method)

 	(in module fretbursts.fret_fit)

 	fit_E_minimize() (fretbursts.burstlib.Data method)

 	fit_E_ML_poiss() (fretbursts.burstlib.Data method)

 	fit_E_poisson_na() (in module fretbursts.fret_fit)

 	fit_E_poisson_nd() (in module fretbursts.fret_fit)

 	fit_E_poisson_nt() (in module fretbursts.fret_fit)

 	fit_E_slope() (in module fretbursts.fret_fit)

 	fit_E_two_gauss_EM() (fretbursts.burstlib.Data method)

 	fit_histogram() (fretbursts.mfit.MultiFitter method)

 	
 	fname (fretbursts.burstlib.Data attribute)

 	fretbursts (module)

 	fretbursts.background (module), [1]

 	fretbursts.burst_plot (module), [1]

 	fretbursts.burstlib (module), [1], [2], [3]

 	fretbursts.burstlib_ext (module)

 	fretbursts.dataload (module)

 	fretbursts.fit (module)

 	fretbursts.fit.exp_fitting (module), [1]

 	fretbursts.fit.gaussian_fitting (module)

 	fretbursts.fret_fit (module)

 	fretbursts.fretmath (module)

 	fretbursts.loader (module), [1]

 	fretbursts.mfit (module)

 	fretbursts.ph_sel (module)

 	fretbursts.phtools (module)

 	fretbursts.phtools.burstsearch (module)

 	fretbursts.phtools.phrates (module)

 	fretbursts.select_bursts (module)

 	from_list() (fretbursts.phtools.burstsearch.Bursts class method)

 	(fretbursts.phtools.burstsearch.BurstsGap class method)

 	fuse (fretbursts.burstlib.Data attribute)

 	fuse_bursts() (fretbursts.burstlib.Data method)

G

 	
 	gamma (fretbursts.burstlib.Data attribute), [1]

 	gamma_correct_E() (in module fretbursts.fretmath)

 	gamma_uncorrect_E() (in module fretbursts.fretmath)

 	gap (fretbursts.phtools.burstsearch.BurstsGap attribute)

 	gap_counts (fretbursts.phtools.burstsearch.BurstsGap attribute)

 	gaussian2d_fit() (in module fretbursts.fit.gaussian_fitting)

 	gaussian_fit_cdf() (in module fretbursts.fit.gaussian_fitting)

 	gaussian_fit_curve() (in module fretbursts.fit.gaussian_fitting)

 	gaussian_fit_hist() (in module fretbursts.fit.gaussian_fitting)

 	
 	gaussian_fit_ml() (in module fretbursts.fit.gaussian_fitting)

 	gaussian_fit_pdf() (in module fretbursts.fit.gaussian_fitting)

 	get_burst_photons() (in module fretbursts.burstlib_ext)

 	get_dist_euclid() (in module fretbursts.fret_fit)

 	get_ecdf() (in module fretbursts.fit.exp_fitting), [1]

 	get_epdf() (in module fretbursts.fit.gaussian_fitting)

 	get_ph_mask() (fretbursts.burstlib.Data method)

 	get_ph_times() (fretbursts.burstlib.Data method)

 	get_residuals() (in module fretbursts.fit.exp_fitting), [1]

 	get_weights() (in module fretbursts.fret_fit)

H

 	
 	hexbin_alex() (in module fretbursts.burst_plot)

 	hist2d_alex() (in module fretbursts.burst_plot)

 	hist_asymmetry() (in module fretbursts.burst_plot)

 	hist_bg() (in module fretbursts.burst_plot)

 	hist_bg_single() (in module fretbursts.burst_plot)

 	hist_brightness() (in module fretbursts.burst_plot)

 	hist_burst_data() (in module fretbursts.burst_plot)

 	hist_burst_delays() (in module fretbursts.burst_plot)

 	hist_burst_phrate() (in module fretbursts.burst_plot)

 	
 	hist_fret() (in module fretbursts.burst_plot)

 	hist_interphoton() (in module fretbursts.burst_plot)

 	hist_interphoton_single() (in module fretbursts.burst_plot)

 	hist_S() (in module fretbursts.burst_plot)

 	hist_sbr() (in module fretbursts.burst_plot)

 	hist_size() (in module fretbursts.burst_plot)

 	hist_size_all() (in module fretbursts.burst_plot)

 	hist_width() (in module fretbursts.burst_plot)

 	histogram() (fretbursts.mfit.MultiFitter method)

 	histogram_mdelays() (in module fretbursts.burstlib_ext)

I

 	
 	istart (fretbursts.phtools.burstsearch.Bursts attribute)

 	istop (fretbursts.phtools.burstsearch.Bursts attribute)

 	
 	iter_bursts_ph() (fretbursts.burstlib.Data method)

 	iter_ph_masks() (fretbursts.burstlib.Data method)

 	iter_ph_times() (fretbursts.burstlib.Data method)

J

 	
 	join() (fretbursts.phtools.burstsearch.Bursts method)

 	
 	join_data() (in module fretbursts.burstlib_ext)

K

 	
 	kde_gaussian() (in module fretbursts.phtools.phrates)

 	
 	kde_laplace() (in module fretbursts.phtools.phrates)

 	kde_rect() (in module fretbursts.phtools.phrates)

L

 	
 	L (fretbursts.burstlib.Data attribute)

 	leakage (fretbursts.burstlib.Data attribute), [1]

 	leakage_correct_E() (in module fretbursts.fretmath)

 	leakage_correction() (fretbursts.burstlib.Data method)

 	leakage_uncorrect_E() (in module fretbursts.fretmath)

 	
 	Lim (fretbursts.burstlib.Data attribute)

 	log_likelihood_binom() (in module fretbursts.fret_fit)

 	log_likelihood_poisson_na() (in module fretbursts.fret_fit)

 	log_likelihood_poisson_nd() (in module fretbursts.fret_fit)

 	log_likelihood_poisson_nt() (in module fretbursts.fret_fit)

M

 	
 	m (fretbursts.burstlib.Data attribute)

 	mburst (fretbursts.burstlib.Data attribute)

 	mch_count_ph_in_bursts_py() (in module fretbursts.phtools.burstsearch)

 	merge() (fretbursts.phtools.burstsearch.Bursts class method)

 	moving_window_chunks() (in module fretbursts.burstlib_ext)

 	moving_window_dataframe() (in module fretbursts.burstlib_ext)

 	
 	moving_window_startstop() (in module fretbursts.burstlib_ext)

 	mtuple_delays() (in module fretbursts.phtools.phrates)

 	mtuple_delays_min() (in module fretbursts.phtools.phrates)

 	mtuple_rates() (in module fretbursts.phtools.phrates)

 	mtuple_rates_max() (in module fretbursts.phtools.phrates)

 	mtuple_rates_t() (in module fretbursts.phtools.phrates)

 	MultiFitter (class in fretbursts.mfit)

N

 	
 	na() (in module fretbursts.select_bursts)

 	na_bg() (in module fretbursts.select_bursts)

 	na_bg_p() (in module fretbursts.select_bursts)

 	naa (fretbursts.burstlib.Data attribute)

 	naa() (in module fretbursts.select_bursts)

 	naa_bg() (in module fretbursts.select_bursts)

 	naa_bg_p() (in module fretbursts.select_bursts)

 	name (fretbursts.burstlib.Data attribute)

 	Name() (fretbursts.burstlib.Data method)

 	nar (fretbursts.burstlib.Data attribute)

 	nch (fretbursts.burstlib.Data attribute)

 	nd() (in module fretbursts.select_bursts)

 	
 	nd_bg() (in module fretbursts.select_bursts)

 	nd_bg_p() (in module fretbursts.select_bursts)

 	nda_percentile() (in module fretbursts.select_bursts)

 	normpdf() (in module fretbursts.fit.gaussian_fitting)

 	nperiods (fretbursts.burstlib.Data attribute)

 	nsalex() (in module fretbursts.loader)

 	nsalex_apply_period() (in module fretbursts.loader)

 	nt (fretbursts.burstlib.Data attribute)

 	nt_bg() (in module fretbursts.select_bursts)

 	nt_bg_p() (in module fretbursts.select_bursts)

 	num_bursts (fretbursts.burstlib.Data attribute)

 	(fretbursts.phtools.burstsearch.Bursts attribute)

P

 	
 	P (fretbursts.burstlib.Data attribute)

 	peak_phrate() (in module fretbursts.select_bursts)

 	period() (in module fretbursts.select_bursts)

 	ph_burst_stats() (in module fretbursts.burstlib_ext)

 	ph_data_sizes (fretbursts.burstlib.Data attribute)

 	ph_in_bursts_ich() (fretbursts.burstlib.Data method)

 	ph_in_bursts_mask_ich() (fretbursts.burstlib.Data method)

 	Ph_p (fretbursts.burstlib.Data attribute)

 	
 	ph_rate (fretbursts.phtools.burstsearch.Burst attribute)

 	(fretbursts.phtools.burstsearch.Bursts attribute)

 	Ph_sel (class in fretbursts.ph_sel)

 	ph_sel (fretbursts.burstlib.Data attribute)

 	ph_times_m (fretbursts.burstlib.Data attribute)

 	photon_hdf5() (in module fretbursts.loader)

 	plot_alternation_hist() (in module fretbursts.burst_plot)

 	plot_alternation_hist_nsalex() (in module fretbursts.burst_plot)

 	plot_ES_selection() (in module fretbursts.burst_plot)

R

 	
 	ratetrace() (in module fretbursts.burst_plot)

 	ratetrace_single() (in module fretbursts.burst_plot)

 	recompute_index_expand() (fretbursts.phtools.burstsearch.Bursts method)

 	
 	recompute_index_reduce() (fretbursts.phtools.burstsearch.Bursts method)

 	recompute_times() (fretbursts.phtools.burstsearch.Bursts method)

 	reorder_parameters() (in module fretbursts.fit.gaussian_fitting)

 	reorder_parameters_ab() (in module fretbursts.fit.gaussian_fitting)

S

 	
 	S (fretbursts.burstlib.Data attribute)

 	sbr() (in module fretbursts.select_bursts)

 	scatter_alex() (in module fretbursts.burst_plot)

 	scatter_da() (in module fretbursts.burst_plot)

 	scatter_fret_nd_na() (in module fretbursts.burst_plot)

 	scatter_fret_size() (in module fretbursts.burst_plot)

 	scatter_fret_width() (in module fretbursts.burst_plot)

 	scatter_naa_nt() (in module fretbursts.burst_plot)

 	scatter_rate_da() (in module fretbursts.burst_plot)

 	scatter_width_size() (in module fretbursts.burst_plot)

 	select_bursts() (fretbursts.burstlib.Data method)

 	select_bursts_mask() (fretbursts.burstlib.Data method)

 	
 	select_bursts_mask_apply() (fretbursts.burstlib.Data method)

 	separation (fretbursts.phtools.burstsearch.Bursts attribute)

 	set_weights_func() (fretbursts.mfit.MultiFitter method)

 	sim_nd_na() (in module fretbursts.fret_fit)

 	single() (in module fretbursts.select_bursts)

 	size (fretbursts.phtools.burstsearch.Bursts attribute)

 	size() (in module fretbursts.select_bursts)

 	slice_ph() (fretbursts.burstlib.Data method)

 	start (fretbursts.phtools.burstsearch.Bursts attribute)

 	status() (fretbursts.burstlib.Data method)

 	stop (fretbursts.phtools.burstsearch.Bursts attribute)

 	str_G() (in module fretbursts.select_bursts)

T

 	
 	T (fretbursts.burstlib.Data attribute)

 	test_fretmath() (in module fretbursts.fretmath)

 	Th_us (fretbursts.burstlib.Data attribute)

 	time() (in module fretbursts.select_bursts)

 	time_max (fretbursts.burstlib.Data attribute)

 	time_min (fretbursts.burstlib.Data attribute)

 	timetrace() (in module fretbursts.burst_plot)

 	timetrace_b_rate() (in module fretbursts.burst_plot)

 	timetrace_bg() (in module fretbursts.burst_plot)

 	timetrace_single() (in module fretbursts.burst_plot)

 	topN_max_rate() (in module fretbursts.select_bursts)

 	topN_nda() (in module fretbursts.select_bursts)

 	
 	topN_sbr() (in module fretbursts.select_bursts)

 	TT (fretbursts.burstlib.Data attribute)

 	two_gauss_mix_ab() (in module fretbursts.fit.gaussian_fitting)

 	two_gauss_mix_pdf() (in module fretbursts.fit.gaussian_fitting)

 	two_gaussian2d_fit() (in module fretbursts.fit.gaussian_fitting)

 	two_gaussian_fit_cdf() (in module fretbursts.fit.gaussian_fitting)

 	two_gaussian_fit_curve() (in module fretbursts.fit.gaussian_fitting)

 	two_gaussian_fit_EM() (in module fretbursts.fit.gaussian_fitting)

 	two_gaussian_fit_EM_b() (in module fretbursts.fit.gaussian_fitting)

 	two_gaussian_fit_hist() (in module fretbursts.fit.gaussian_fitting)

 	two_gaussian_fit_hist_min() (in module fretbursts.fit.gaussian_fitting)

 	two_gaussian_fit_hist_min_ab() (in module fretbursts.fit.gaussian_fitting)

 	two_gaussian_fit_KDE_curve() (in module fretbursts.fit.gaussian_fitting)

U

 	
 	uncorrect_E_gamma_leak_dir() (in module fretbursts.fretmath)

 	uncorrect_S() (in module fretbursts.fretmath)

 	
 	usalex() (in module fretbursts.loader)

 	usalex_apply_period() (in module fretbursts.loader)

W

 	
 	width (fretbursts.phtools.burstsearch.Burst attribute)

 	(fretbursts.phtools.burstsearch.Bursts attribute)

 	(fretbursts.phtools.burstsearch.BurstsGap attribute)

 	
 	width() (in module fretbursts.select_bursts)

 Why an HDF5-based smFRET file format

Why an HDF5-based smFRET file format

In this page we briefly introduce what the HDF5 format is and why it is
important for single-molecule FRET data.

What is HDF5?

HDF5 [http://www.hdfgroup.org/HDF5/] is standard and general-purposes
container-format for binary data (see also
HDF on Wikipedia [http://en.wikipedia.org/wiki/Hierarchical_Data_Format]).
The format can store any number of
multi-dimensional arrays with no size limit in a hierarchical fashion
(i.e. arrays can be put in folders and subfolders called groups).
Any dataset or folder can have metadata attached to it (for example a
description, a date, or an array of parameters).

The format is self-describing, so any HDF5 compatible application can read
the file content without knowing in advance the data-type (i.e. int32 or float)
or the byte layout (i.e. big-endian little-endian).

HDF5 supports transparent data compression using the zlib algorithm
or any third-party algorithm via plugins.

The format is an open standard supported by the non-profit organization
HDFGroup. Open-sources libraries to
read the format are available for all the main programming languages.

The HDF5 ecosystem

Numerous organizations [http://www.hdfgroup.org/users.html] use HDF5.
Just as an example, the native MATLAB format (.mat) is HDF5-based from
version 7.3 on.

Libraries to read the HDF5 format exist for the majority of
programming languages. Among the others, FORTRAN, C, C++, C#, Java, MATLAB,
Python, Mathematica, R have first-class support for the format.

LabView can read/write the format using
h5labview [http://h5labview.sourceforge.net/].

Origin natively support HDF5 from version 8.1.

Open-source and multi-platform viewers/editors are also available
(see HDFView [http://www.hdfgroup.org/products/java/hdfview/index.html] and
ViTables [http://vitables.org/]).

Python, in particular, has 2 libraries that allow handling HDF5 files:

	h5py [http://www.h5py.org/]

	pytables [http://www.pytables.org/]

FRETBursts uses pyTables.

Why HDF5 and smFRET?

Most of smFRET data around the world is acquired through a custom setup and
custom software. As a result the number of file formats is almost as large
as the number of existing setups.

A single, space-efficient and self-documenting file format like HDF5 is
highly preferable to the Babel of formats used today.

Numerous advantages can be easily envisioned:

	Efficiency: HDF5 is highly efficient both for space and speed. Libraries
to interoperate with the format are broadly used and heavily tested.
Scientists don’t need to reinvent the wheel and can leverage the already
available state-of-the art software technologies.

	Long-term persistence: in 5-10-20 years the data can be always read
without relying on obscure, poorly document, (or in some case vendor
specific) binary formats.

	Easy interoperability: a single format lowers the barriers for
data-exchange and collaboration. A single format makes easier to compare
the output of different analysis software, encourages reproducibility and
foster collaboration between different groups.

HDF5 in FRETBursts

FRETBursts allows saving and loading smFRET data from and to
an HDF5-based file format called Photon-HDF5.

The Photon-HDF5 is a pre-defined layout to be used with
smFRET and other data involving time-series of photon-data.

A description of the Photon-HDF5 format and its specifications can be found in
Photon-HDF5 format [http://photon-hdf5.readthedocs.org/].

For documentation on using the Photon-HDF5 format in FRETBursts see:

	HDF5-based smFRET file format

 HDF5-based smFRET file format

HDF5-based smFRET file format

We developed an HDF5-based format called Photon-HDF5 for smFRET
and other measurements involving series of photon timestamps.
The specifications of the Photon-HDF5 format can be found in
Photon-HDF5 format [http://photon-hdf5.readthedocs.org/].

For a general overview on the importance of a standard file format
for smFRET see also Why an HDF5-based smFRET file format.

Read and write HDF5 smFRET files

To load a smFRET data contained in HDF5-Ph-Data use the
function loader.photon_hdf5().

You can convert files from any format to Photon-HDF5 by using
phconvert [https://github.com/tritemio/phconvert]
(already pre-installed with FRETBursts).

 Getting started for the absolute python beginner

Getting started for the absolute python beginner

Before running FRETBursts you need to install a python distribution that
includes the Jupyter/IPython Notebook application.

You can find a quick guide for installing the software and running your first
notebook here:

	Jupyter/IPython Notebook Quick Start Guide

Once you are able start Jupyter Notebook application and open
a notebook you can move to the next section.

Installing FRETBursts

To install FRETBursts, make sure you close Jupyter Notebook, then
type the following commands in a terminal
(i.e. cmd on Windows or Terminal on OSX):

conda install fretbursts -c conda-forge

The installation should take a few seconds.
If you notice any error please report it by opening a new issue on the
FRETBursts GitHub Issues [https://github.com/OpenSMFS/FRETBursts/issues].

Running FRETBursts tutorial notebook

Download the ZIP file of
FRETBursts notebooks [https://github.com/OpenSMFS/FRETBursts_notebooks/archive/master.zip]
and extract it inside a folder accessible by the Jupyter Notebook App.

Next, in the new Jupyter Notebook Dashboard click on the folder containing
the FRETBursts notebooks.

For first time users, we recommend to start from the notebook:

	FRETBursts - us-ALEX smFRET burst analysis [http://nbviewer.ipython.org/urls/raw.github.com/tritemio/FRETBursts_notebooks/master/notebooks/FRETBursts%2520-%2520us-ALEX%2520smFRET%2520burst%2520analysis.ipynb]

and follow the instructions therein.

Remember, to run the notebooks step-by-step (one cell a time) keep pressing
shift + enter. To run the entire notebook in a single step click on menu
Cell -> Run All.

For more info how to run/edit a notebook see Running the Jupyter Notebook.

 Background estimation

Background estimation

background.py

Routines to compute the background from an array of timestamps. This module
is normally imported as bg when fretbursts is imported.

The important functions are exp_fit() and exp_cdf_fit() that
provide two (fast) algorithms to estimate the background without binning.
These functions are not usually called directly but passed to
Data.calc_bg() to compute the background of a measurement.

See also exp_hist_fit() for background estimation using an histogram fit.

	
fretbursts.background.exp_fit(ph, tail_min_us=None, clk_p=1.25e-08, error_metrics=None)

	Return a background rate using the MLE of mean waiting-times.

Compute the background rate, selecting waiting-times (delays) larger
than a minimum threshold.

This function performs a Maximum Likelihood (ML) fit. For
exponentially-distributed waiting-times this is the empirical mean.

	Parameters

	
	ph (array) – timestamps array from which to extract the background

	tail_min_us (float) – minimum waiting-time in micro-secs

	clk_p (float) – clock period for timestamps in ph

	error_metrics (string or None) – Valid values are ‘KS’ or ‘CM’.
‘KS’ (Kolmogorov-Smirnov statistics) computes the error as the
max of deviation of the empirical CDF from the fitted CDF.
‘CM’ (Crames-von Mises) uses the L^2 distance.
If None, no error metric is computed (returns None).

	Returns

	2-Tuple – Estimated background rate in cps, and a “quality of fit”
index (the lower the better) according to the chosen metric.
If error_metrics==None, the returned “quality of fit” is None.

See also

exp_cdf_fit(), exp_hist_fit()

	
fretbursts.background.exp_cdf_fit(ph, tail_min_us=None, clk_p=1.25e-08, error_metrics=None)

	Return a background rate fitting the empirical CDF of waiting-times.

Compute the background rate, selecting waiting-times (delays) larger
than a minimum threshold.

This function performs a least square fit of an exponential Cumulative
Distribution Function (CDF) to the empirical CDF of waiting-times.

	Parameters

	
	ph (array) – timestamps array from which to extract the background

	tail_min_us (float) – minimum waiting-time in micro-secs

	clk_p (float) – clock period for timestamps in ph

	error_metrics (string or None) – Valid values are ‘KS’ or ‘CM’.
‘KS’ (Kolmogorov-Smirnov statistics) computes the error as the
max of deviation of the empirical CDF from the fitted CDF.
‘CM’ (Crames-von Mises) uses the L^2 distance.
If None, no error metric is computed (returns None).

	Returns

	2-Tuple – Estimated background rate in cps, and a “quality of fit”
index (the lower the better) according to the chosen metric.
If error_metrics==None, the returned “quality of fit” is None.

See also

exp_fit(), exp_hist_fit()

	
fretbursts.background.exp_hist_fit(ph, tail_min_us, binw=5e-05, clk_p=1.25e-08, weights='hist_counts', error_metrics=None)

	Compute background rate with WLS histogram fit of waiting-times.

Compute the background rate, selecting waiting-times (delays) larger
than a minimum threshold.

This function performs a Weighed Least Squares (WLS) fit of the
histogram of waiting times to an exponential decay.

	Parameters

	
	ph (array) – timestamps array from which to extract the background

	tail_min_us (float) – minimum waiting-time in micro-secs

	binw (float) – bin width for waiting times, in seconds.

	clk_p (float) – clock period for timestamps in ph

	weights (None or string) – if None no weights is applied.
if is ‘hist_counts’, each bin has a weight equal to its counts
if is ‘inv_hist_counts’, the weight is the inverse of the counts.

	error_metrics (string or None) – Valid values are ‘KS’ or ‘CM’.
‘KS’ (Kolmogorov-Smirnov statistics) computes the error as the
max of deviation of the empirical CDF from the fitted CDF.
‘CM’ (Crames-von Mises) uses the L^2 distance.
If None, no error metric is computed (returns None).

	Returns

	2-Tuple – Estimated background rate in cps, and a “quality of fit”
index (the lower the better) according to the chosen metric.
If error_metrics==None, the returned “quality of fit” is None.

See also

exp_fit(), exp_cdf_fit()

Low-level background fit functions

Generic functions to fit exponential populations.

These functions can be used directly, or, in a typical FRETBursts workflow
they are passed to higher level methods.

See also:

	Background estimation

	
fretbursts.fit.exp_fitting.expon_fit(s, s_min=0, offset=0.5, calc_residuals=True)

	Fit sample s to an exponential distribution using the ML estimator.

This function computes the rate (Lambda) using the maximum likelihood (ML)
estimator of the mean waiting-time (Tau), that for an exponentially
distributed sample is the sample-mean.

	Parameters

	
	s (array) – array of exponetially-distributed samples

	s_min (float) – all samples < s_min are discarded
(s_min must be >= 0).

	offset (float) – offset for computing the CDF. See get_ecdf().

	calc_residuals (bool) – if True compute the residuals of the fitted
exponential versus the empirical CDF.

	Returns

	A 4-tuple of the fitted rate (1/life-time), residuals array,
residuals x-axis array, sample size after threshold.

	
fretbursts.fit.exp_fitting.expon_fit_cdf(s, s_min=0, offset=0.5, calc_residuals=True)

	Fit of an exponential model to the empirical CDF of s.

This function computes the rate (Lambda) fitting a line (linear
regression) to the log of the empirical CDF.

	Parameters

	
	s (array) – array of exponetially-distributed samples

	s_min (float) – all samples < s_min are discarded
(s_min must be >= 0).

	offset (float) – offset for computing the CDF. See get_ecdf().

	calc_residuals (bool) – if True compute the residuals of the fitted
exponential versus the empirical CDF.

	Returns

	A 4-tuple of the fitted rate (1/life-time), residuals array,
residuals x-axis array, sample size after threshold.

	
fretbursts.fit.exp_fitting.expon_fit_hist(s, bins, s_min=0, weights=None, offset=0.5, calc_residuals=True)

	Fit of an exponential model to the histogram of s using least squares.

	Parameters

	
	s (array) – array of exponetially-distributed samples

	bins (float or array) – if float is the bin width, otherwise is the
array of bin edges (passed to numpy.histogram)

	s_min (float) – all samples < s_min are discarded
(s_min must be >= 0).

	weights (None or string) – if None no weights is applied.
if is ‘hist_counts’, each bin has a weight equal to its counts
if is ‘inv_hist_counts’, the weight is the inverse of the counts.

	offset (float) – offset for computing the CDF. See get_ecdf().

	calc_residuals (bool) – if True compute the residuals of the fitted
exponential versus the empirical CDF.

	Returns

	A 4-tuple of the fitted rate (1/life-time), residuals array,
residuals x-axis array, sample size after threshold.

	
fretbursts.fit.exp_fitting.get_ecdf(s, offset=0.5)

	Return arrays (x, y) for the empirical CDF curve of sample s.

See the code for more info (is a one-liner!).

	Parameters

	
	s (array of floats) – sample

	offset (float, default 0.5) – Offset to add to the y values of the CDF

	Returns

	(x, y) (tuple of arrays) – the x and y values of the empirical CDF

	
fretbursts.fit.exp_fitting.get_residuals(s, tau_fit, offset=0.5)

	Returns residuals of sample s CDF vs an exponential CDF.

	Parameters

	
	s (array of floats) – sample

	tau_fit (float) – mean waiting-time of the exponential distribution
to use as reference

	offset (float) – Default 0.5. Offset to add to the empirical CDF.
See get_ecdf() for details.

	Returns

	residuals (array) – residuals of empirical CDF compared with analytical
CDF with time constant tau_fit.

 Burst selection

Burst selection

After performing a burst search is common to select bursts according to
different criteria (burst size, FRET efficiency, etc…).

In FRETBursts this can be easily accomplished using the method
Data.select_bursts(). This method takes
a selection function
as parameters. Data.select_bursts() returns a new Data object
containing only the new sub-set of bursts. A new selection can be applied
to this new object as well. In this way, different
selection criteria can be freely combined in order to obtain a
burst population satisfying arbitrary constrains.

FRETBursts provides a large number of
selection functions. Moreover, creating a new
selection function is extremely simple, requiring (usually) 2-3 lines of code.
You can take the functions in select_bursts.py as examples to create your
own selection rule.

In the next section we list all the selection functions. You may also want
to check the Data methods that deal with burst selection:

	Data.select_bursts()

	Data.select_bursts_mask()

	Data.select_bursts_mask_apply()

Selection functions

The module select_bursts defines functions to select
bursts according to different criteria.

These functions are usually passed to
Data.select_bursts().
For example:

ds = d.select_bursts(select_bursts.E, th1=0.2, th2=0.6)

returns a new object ds containing only the bursts of d that pass the
specified selection criterium (E between 0.2 and 0.6 in this case).

	
fretbursts.select_bursts.E(d, ich=0, E1=-inf, E2=inf)

	Select bursts with E between E1 and E2.

	
fretbursts.select_bursts.ES(d, ich=0, E1=-inf, E2=inf, S1=-inf, S2=inf, rect=True)

	Select bursts with E between E1 and E2 and S between S1 and S2.

When rect is True the selection is rectangular otherwise is elliptical.

See also

For plotting the ES region selected by (E1, E2, S1, S2, rect):

	fretbursts.burst_plot.plot_ES_selection()

	
fretbursts.select_bursts.ES_ellips(d, ich=0, E1=-1000.0, E2=1000.0, S1=-1000.0, S2=1000.0)

	Select bursts with E-S inside an ellipsis inscribed in E1, E2, S1, S2.

	
fretbursts.select_bursts.ES_rect(d, ich=0, E1=-inf, E2=inf, S1=-inf, S2=inf)

	Select bursts inside the rectangle defined by E1, E2, S1, S2.

	
fretbursts.select_bursts.brightness(d, ich=0, th1=0, th2=inf, add_naa=False, gamma=1, beta=1, donor_ref=True)

	Select bursts with size/width between th1 and th2 (cps).

	
fretbursts.select_bursts.consecutive(d, ich=0, th1=0, th2=inf, kind='both')

	Select consecutive bursts with th1 <= separation <= th2 (in sec.).

	Parameters

	kind (string) – valid values are ‘first’ to select the first burst
of each pair, ‘second’ to select the second burst of each pair
and ‘both’ to select both bursts in each pair.

	
fretbursts.select_bursts.na(d, ich=0, th1=20, th2=inf)

	Select bursts with (na >= th1) and (na <= th2).

	
fretbursts.select_bursts.na_bg(d, ich=0, F=5)

	Select bursts with (na >= bg_ad*F).

	
fretbursts.select_bursts.na_bg_p(d, ich=0, P=0.05, F=1.0)

	Select bursts w/ AD signal using P{F*BG>=na} < P.

	
fretbursts.select_bursts.naa(d, ich=0, th1=20, th2=inf, gamma=1.0, beta=1.0, donor_ref=True, naa_comp=False, naa_aexonly=True)

	Select bursts with (naa >= th1) and (naa <= th2).

The naa quantity can be optionally corrected using gamma and beta
factors.

	Parameters

	
	th1, th2 (floats) – lower (th1) and upper (th2) bounds for
selecting naa. By default th2 = inf (i.e. no upper limit).

	gamma, beta (floats) – arguments used to compute gamma- and
beta-corrected burst sizes. See
fretbursts.burstlib.Data.burst_sizes_ich() for details.

	donor_ref (bool) – Select the convention for naa correction.
If True (default), uses naa / (beta * gamma). Otherwise,
uses naa / beta. It is suggested to use the same donor_ref
convention when combining Dex size and naa burst selections
so that the thresholds values of the two selections will be
commensurable.

	na_comp (bool) – [PAX-only] If True, multiply the na term
by (1 + Wa/Wd), where Wa and Wd are the D and A alternation
durations (typically Wa/Wd = 1).

	naa_aexonly (bool) – [PAX-only] if True, the naa term is
corrected to include only A emission due to A excitation.
If False, the naa term includes all the counts in DAexAem.
The naa term also depends on the naa_comp argument.

	naa_comp (bool) – [PAX-only] If True, multiplies the naa term by
(1 + Wa/Wd) where Wa and Wd are the D and A alternation
durations (typically Wa/Wd = 1). The naa term also depends on
the naa_aexonly argument.

See also

	fretbursts.burstlib.Data.burst_sizes_pax_ich().

	
fretbursts.select_bursts.naa_bg(d, ich=0, F=5)

	Select bursts with (naa >= bg_aa*F).

	
fretbursts.select_bursts.naa_bg_p(d, ich=0, P=0.05, F=1.0)

	Select bursts w/ AA signal using P{F*BG>=naa} < P.

	
fretbursts.select_bursts.nd(d, ich=0, th1=20, th2=inf)

	Select bursts with (nd >= th1) and (nd <= th2).

	
fretbursts.select_bursts.nd_bg(d, ich=0, F=5)

	Select bursts with (nd >= bg_dd*F).

	
fretbursts.select_bursts.nd_bg_p(d, ich=0, P=0.05, F=1.0)

	Select bursts w/ DD signal using P{F*BG>=nd} < P.

	
fretbursts.select_bursts.nda_percentile(d, ich=0, q=50, low=False, gamma=1.0, add_naa=False)

	Select bursts with SIZE >= q-percentile (or <= if low is True)

gamma and add_naa are passed to
fretbursts.burstlib.Data.burst_sizes_ich() to compute the burst size.

	
fretbursts.select_bursts.nt_bg(d, ich=0, F=5)

	Select bursts with (nt >= bg*F).

	
fretbursts.select_bursts.nt_bg_p(d, ich=0, P=0.05, F=1.0)

	Select bursts w/ signal using P{F*BG>=nt} < P.

	
fretbursts.select_bursts.peak_phrate(d, ich=0, th1=0, th2=inf)

	Select bursts with peak phtotons rate between th1 and th2 (cps).

Note that this function requires to compute the peak photon rate
first using fretbursts.burstlib.Data.calc_max_rate().

	
fretbursts.select_bursts.period(d, ich=0, bp1=0, bp2=None)

	Select bursts from period bp1 to period bp2 (included).

	
fretbursts.select_bursts.sbr(d, ich=0, th1=0, th2=inf)

	Select bursts with SBR between th1 and th2.

	
fretbursts.select_bursts.single(d, ich=0, th=1)

	Select bursts that are at least th millisec apart from the others.

	
fretbursts.select_bursts.size(d, ich=0, th1=20, th2=inf, add_naa=False, gamma=1.0, beta=1.0, donor_ref=True, ph_sel=None, naa_aexonly=False, naa_comp=False, na_comp=False)

	Select bursts with burst sizes (i.e. counts) between th1 and th2.

The burst size is the number of photon in a burst. By default it
includes all photons during donor excitation (Dex).
To add AexAem photons to the burst size use add_naa=True.
If ph_sel is specified use a PAX-specific definition of size
as defined in fretbursts.burstlib.Data.burst_sizes_pax_ich().

	Parameters

	
	d (Data object) – the object containing the measurement.

	ich (int) – the spot number, only relevant for multi-spot. In
single-spot data there is only CH-0 so this argument may be
omitted. Default 0.

	th1, th2 (floats) – select bursts with th1 <= size <= th2.
Default th2 = inf (i.e. no upper limit).

	add_naa (boolean) – when True, add AexAem photons when computing burst
burst size. Default False.

	gamma, beta (floats) – arguments used to compute gamma- and
beta-corrected burst sizes. See
fretbursts.burstlib.Data.burst_sizes_ich() for details.

	donor_ref (bool) – Select the convention for naa correction.
See fretbursts.burstlib.Data.burst_sizes_ich() for details.

	ph_sel (Ph_sel object or None) – if not None, use PAX-specific
burst size definition. ph_sel defines which terms are included
in the burst size.

	na_comp (bool) – [PAX-only] If True, multiply the na term
by (1 + Wa/Wd), where Wa and Wd are the D and A alternation
durations (typically Wa/Wd = 1).

	naa_aexonly (bool) – [PAX-only] if True, the naa term is
corrected to include only A emission due to A excitation.
If False, the naa term includes all the counts in DAexAem.
The naa term also depends on the naa_comp argument.

	naa_comp (bool) – [PAX-only] If True, multiply the naa term by
(1 + Wa/Wd) where Wa and Wd are the D and A alternation
durations (typically Wa/Wd = 1). The naa term also depends on
the naa_aexonly argument.

	Returns

	A tuple containing an array (the burst mask) and a string which
briefly describes the selection.

See also

	fretbursts.burstlib.Data.burst_sizes_ich().

	fretbursts.burstlib.Data.burst_sizes_pax_ich().

	
fretbursts.select_bursts.str_G(gamma, donor_ref)

	A string indicating gamma value and convention for burst size correction.

	
fretbursts.select_bursts.time(d, ich=0, time_s1=0, time_s2=None)

	Select the burst starting from time_s1 to time_s2 (in seconds).

	
fretbursts.select_bursts.topN_max_rate(d, ich=0, N=500)

	Select N bursts with the highest max burst rate.

	
fretbursts.select_bursts.topN_nda(d, ich=0, N=500, gamma=1.0, add_naa=False)

	Select the N biggest bursts in the channel.

gamma and add_naa are passed to
fretbursts.burstlib.Data.burst_sizes_ich() to compute the burst size.

	
fretbursts.select_bursts.topN_sbr(d, ich=0, N=200)

	Select the top N bursts with hightest SBR.

	
fretbursts.select_bursts.width(d, ich=0, th1=0.5, th2=inf)

	Select bursts with (width >= th1) and (width <= th2), in ms.

 Burst Search in FRETBursts

Burst Search in FRETBursts

This section describes details and conventions used to implement burst
search in FRETBursts.
For a more general explanation of burst search concepts see
(Ingargiola PLOS ONE 2016) [http://dx.doi.org/10.1101/039198].
For usage examples see the
μs-ALEX notebook [http://nbviewer.ipython.org/urls/raw.github.com/tritemio/FRETBursts_notebooks/master/notebooks/FRETBursts%2520-%2520us-ALEX%2520smFRET%2520burst%2520analysis.ipynb].
An analysis of implementation performances of the
low-level burst search can be found in this blog post:
Optimizing burst search in python [http://tritemio.github.io/smbits/2015/12/06/optimize-burst-search-python/].

Defining the rate estimator

Before describing FRETBursts implementation let me introduce an expression
for computing rates of random events that will be used later on.
A general expression, used by FRETBursts (since version 0.5.6), for estimating
the rate using m consecutive timestamps is:

(1)\[\hat{\lambda} = \frac{m - 1 - c}{t_{i + m - 1} - t_{i}}\]

where \(c\) is a parameter that can be passed to all FRETBursts functions
that deal with photon rates. Note that \(m\) is the number of photons
and \(m - 1\) is the number of inter-photon delays. For example,
using \(c=1\), yields an unbiased estimator of the rate for events
generated by a stationary Poisson process. See
this notebook [http://nbviewer.jupyter.org/github/tritemio/notebooks/blob/master/Estimation%20of%20rates%20of%20random%20events.ipynb]
for a discussion of the different estimator properties as a function of
\(c\). In practice, the choice of \(c\) is just a convention and it is provided
for flexibility and to match results of other software that may use a different
definition.

In FRETBursts version 0.5.5 or earlier, there is no
c parameter and the rate is always computed as
\(\hat{\lambda} = m / (t_{i + m - 1} - t_{i})\)
(equivalent to \(c=-1\)).

Conventions in burst search

Burst search is mainly performed calling the method
Data.burst_search(). The AND-gate burst search function
(fretbursts.burstlib_ext.burst_search_and()) calls
Data.burst_search() under the hood, so all the considerations
below are also valid for the AND-gate version.

With Data.burst_search(), you can perform burst search by setting
a “rate threshold” F times larger than the background rate (argument F),
or you can just set a single fixed rate for the full measurement
(argument min_rate_cps). In both cases the real burst search is performed
by the low-level function phtools.burstsearch.bsearch_py(), which
takes as input parameters m and T. This function finds bursts
when a group of m consecutive photons lies within a time window T.
You can find an analysis of the algorithm implementation and performance
considerations in this
blog post [http://tritemio.github.io/smbits/2015/12/06/optimize-burst-search-python/].

When using the F argument, FRETBursts will choose the appropriate T for each
background period in order to obtain a “rate threshold”
F times larger than background rate. In this case, FRETBursts
uses the following expression to compute T (derived from (1)):

\[T(t) = \frac{m - 1 - c}{F \cdot \hat{\lambda}_{bg}(t)}\]

where \(\hat{\lambda}_{bg}(t)\) is the estimated background rate
as a function of time (\(t\)).

Conversely, when directly fixing a rate with the argument
min_rate_cps (\(\lambda_{th}\)), FRETBursts computes T
using the expression:

\[T = \frac{m - 1 - c}{\lambda_{th}}\]

The parameter \(c\) can be specified when performing burst search.
When not specified, the default value of \(c=-1\) is used.
This choice preserves backward compatibility with results obtained
with FRETBursts 0.5.5 or earlier.

The Core Algorithm

The different types of burst search described in the previous sections
are implemented calling the same low-level burst search function which
implements the core “sliding window” algorithm.
Here we explain in details this core algorithm.

The low-level burst search takes as an input the array of (monotonically
increasing) photon timestamps, as well as two other arguments m
(the number of timestamps) and T (the time window duration).
Starting from the the first element of the array,
we consider all the m-tuple of timestamps [0..m-1], [1..m], etc.

Point 1. For each m-tuple if the timestamps are contained in
a time window smaller or equal to T we mark a burst start at the position
of the first timestamp in the current m-tuple. Otherwise we take the next
m-tuple and repeat the check.

Once a burst starts, we keep “sliding” the m-tuple one timestamp a time.
If the current m-tuple is still contained in a window of duration T
the burst continues. When the current m-tuple is contained in a window
larger than T the burst ends. When this happens, the last timestamp
in a burst is the (m-1)-th timestamp of current m-tuple (i.e. the last
timestamps of the previous m-tuple which was still contained in a
window T). After the burst ends, we continue as in point 1 checking
the next m-tuple. This is shifted by only one
timestamp (i.e. there is no jump when the burst ends).

At this point, it can happen that the current m-tuple is contained in T
and a new burst starts right away. In this situation the new bursts will
have m-2 timestamps overlapping with the previous one.

At the end of the timestamp array, if a burst is currently started we end it
by marking the last timestamp as burst stop. The set of bursts obtained
in this way has the minimum-rate property, i.e. all the m-tuple of
consecutive timestamps in any burst are guaranteed to be contained in a
windows T or smaller. Conversely, a few bursts will overlap and thus share
some timestamps. If the user wants to avoid overlapping bursts a
burst fusion steps must be applied as described in next section. Note,
however, that after fusing overlapping bursts at least one m-tuple
inside each fused burst will not have the minimum-rate property, i.e.
the m-tuple is contained in a window larger than T.

The previous function is implemented in phtools.burstsearch.bsearch_py()
(pure python version) and in phtools.burstsearch_c.bsearch_c()
(optimized cython version). Several tests make sure that the two functions
return numerically identical results. An analysis of performance of
of different implementations can be found in this blog post:
Optimizing burst search in python [http://tritemio.github.io/smbits/2015/12/06/optimize-burst-search-python/].

Burst Fusion

Burst fusion is an operation which fuses consecutive bursts if the
start of the second bursts minus the end of the first burst
(called burst separation) is <=
of a fusion time \(t_f\). When bursts are overlapping (see previous
section) the burst separation is negative. Therefore, to avoid
overlapping bursts, we need to apply fusion with separation of 0.
Note that with this condition, if a bursts ends on a timestamp which
is the start of the next burst (i.e. 1 overlapping photon) the two
bursts will be fused. Conversely if one burst ends and the next burst
starts one photon later (0 overlapping photons) the two bursts will
be kept separated. In the latter case, there will be no timestamp
between the end of the previous burst and the start of the next one.

To perform burst fusion use the method Data.fuse_bursts().

Low-level burst search functions

The module phtools.burstsearch provides the low-level (or core)
burst search and photon counting functions.
This module also provides Bursts, a container for a set of bursts.
Bursts provides attributes for the main burst quatitites (istart,
istop, start, stop, counts, width, etc…). It implements the
iterator interface (iterate burst by burst). Moreover Bursts can
be indexed ([], i.e. getitem interface) supporting the same indexing as a
numpy 1-D array.

The burst search functions return a 2-D array (burst array) of shape Nx4,
where N is the number of bursts. This array can used to build a Bursts object
using:

Bursts(bursts_array)

As an example, let assume having a burst array bursts. To take a slice of
only the first 10 bursts you can do:

bursts10 = bursts[:10] # new Bursts object with the first 10 bursts

To obtain the burst start of all the bursts:

bursts.start

To obtain the burst counts (number of photons) for the 10-th to 20-th burst:

bursts[10:20].counts

For efficiency, when iterating over Bursts the returned burst is a
named tuple Burst, which implements the same attributes as Bursts
(istart, istop, start, stop, counts and width).
This results in faster iteration and attribute access than using Bursts
objects with only one burst.

Three methods allow to transform Bursts to refer to a new timestamps array:

	Bursts.recompute_times()

	Bursts.recompute_index_expand()

	Bursts.recompute_index_reduce()

Finally, in order to support fusion of consecutive bursts, we provide the class
BurstsGap (and single-burst version BurstGap) which add the
attributes gap and gap_counts that contains the duration and the number
of photons in gaps inside a burst. The attribute width is the total burst
duration minus gap, while counts is the total number of photons minus
photons falling inside gaps (gaps are open intervals, do not include edges).

	
class fretbursts.phtools.burstsearch.Burst

	Container for a single burst.

	
counts

	Number of photons in the burst.

	
ph_rate

	Photon rate in the burst (total photon counts/duration).

	
width

	Burst duration in timestamps unit.

	
class fretbursts.phtools.burstsearch.Bursts(burstarray)

	A container for burst data.

This class provides a container for burst data. It has a
set of attributes (start, stop, istart, istop, counts, width,
ph_rate, separation) that can be accessed to obtain burst data.
Only a few fundamental attributes are stored, the others are comuputed
on-fly using python properties.

Other attributes are dataframe (a pandas.DataFrame with the complete
burst data), num_bursts (the number of bursts).

Bursts objects can be built from a list of single Burst objects
by using the method Bursts.from_list(), or from 2D arrays
containing bursts data (one row per burst; columns: istart, istop, start,
stop) such as the ones returned by burst search functions (e.g.
bsearch_py()).

Bursts objects are iterable, yielding one burst a time (Burst
objects). Bursts can be compared for equality (with ==) and copied
(Bursts.copy()).

Additionally basic methods for burst manipulation are provided:

	recompute_times recompute start and stop times using the current
start and stop index and a new timestamps array passed as argument.

	recompute_index_* recompute start and stop indexes to refer to an
expanded or reduced timestamp selection.

Other methods are:

	and_gate computing burst intersection with a second set of bursts.
Used to implement the dual-channel burst search (DCBS).

Methods that may be implemented in the future:

	or_gate: computing union with a second set of bursts.

	fuse_bursts: fuse nearby bursts.

	
and_gate(bursts2)

	From 2 burst arrays return bursts defined as intersection (AND rule).

The two input burst-arrays come from 2 different burst searches.
Returns new bursts representing the overlapping bursts in the 2 inputs
with start and stop defined as intersection (or AND) operator.

Both input and output are Bursts objects.

	Parameters

	bursts_a (Bursts object) – second set of bursts to be intersected
with bursts in self. The number of bursts in self and
bursts_a can be different.

	Returns

	Bursts object containing intersections (AND) of overlapping bursts.

	
copy()

	Return a new copy of current Bursts object.

	
counts

	Number of photons in each burst.

	
dataframe

	A pandas.DataFrame containing burst data, one row per burst.

	
classmethod empty(num_bursts=0)

	Return an empty Bursts() object.

	
classmethod from_list(bursts_list)

	Build a new Bursts() object from a list of Burst.

	
istart

	Index of 1st ph in each burst

	
istop

	Index of last ph in each burst

	
join(bursts, sort=False)

	Join the current Bursts object with another one. Returns a copy.

	
classmethod merge(list_of_bursts, sort=False)

	Merge Bursts in list_of_bursts, returning a new Bursts object.

	
num_bursts

	Number of bursts.

	
ph_rate

	Photon rate in burst (tot size/duration)

	
recompute_index_expand(mask, out=None)

	Recompute istart and istop from selection mask to full timestamps.

This method returns a new Bursts object with recomputed istart and
istop. Old istart, istop are assumed to be index of a reduced array
timestamps[mask]. New istart, istop are computed to be index of
a “full” timestamps array of size mask.size.

This is useful when performing burst search on a timestamps selection
and we want to transform the burst data to use the index of the “full”
timestamps array.

	Parameters

	
	mask (bool array) – boolean mask defining the timestamps selection
on which the old istart and istop were computed.

	out (None or Bursts) – if None (default), do computations on a copy
of the current object. Otherwise, modify the Bursts object
passed (can be used for in-place operations).

	Returns

	Bursts object with recomputed istart/istop.

	
recompute_index_reduce(times_reduced, out=None)

	Recompute istart and istop on reduced timestamps times_reduced.

This method returns a new Bursts object with same start and stop times
and recomputed istart and istop. Old istart, istop are assumed to
be index of a “full” timestamps array of size mask.size. New istart,
istop are computed to be index of the reduced timestamps array
timestamps_reduced.

Note: it is required that all the start and stop times are
also contained in the reduced timestamps selection.

This method is the inverse of recompute_index_expand().

	Parameters

	
	times_reduced (array) – array of selected timestamps used to
compute the new istart and istop. This array needs to be
a sub-set of the original timestamps array.

	out (None or Bursts) – if None (default), do computations on a copy
of the current object. Otherwise, modify the Bursts object
passed (can be used for in-place operations).

	Returns

	Bursts object with recomputed istart/istop times.

	
recompute_times(times, out=None)

	Recomputes start, stop times using timestamps from a new array.

This method computes burst start, stop using the index of timestamps
from the current object and timestamps from the passed array times.

This is useful, for example, when burst search is computed on a
“compacted” timestamps array (i.e. removing the gaps outside the
alternation period in usALEX experiments), and afterwards the “real”
start and stop times needs to be recomputed.

	Parameters

	
	times (array) – array of photon timestamps

	out (None or Bursts) – if None (default), do computations on a copy
of the current object. Otherwise, modify the Bursts object
passed (can be used for in-place operations).

	Returns

	Bursts object with recomputed start/stop times.

	
separation

	Separation between nearby bursts

	
size

	Number of bursts. Used for compatibility with ndarray.size.
Use Bursts.num_bursts preferentially.

	
start

	Time of 1st ph in each burst

	
stop

	Time of last ph in each burst

	
width

	Burst duration in timestamps units.

	
class fretbursts.phtools.burstsearch.BurstsGap(burstarray)

	A container for bursts with optional gaps.

This class extend Bursts adding the attributes/properties gap
(a duration) and gap_counts (counts in gap) that allow accounting
for gaps inside bursts.

	
counts

	Number of photons in each burst, minus the gap_counts.

	
classmethod from_list(bursts_list)

	Build a new BurstsGap() from a list of BurstGap.

	
gap

	Time gap inside a burst

	
gap_counts

	Number of photons falling inside gaps of each burst.

	
width

	Burst duration in timestamps units, minus the gap time.

	
fretbursts.phtools.burstsearch.bsearch_py(times, L, m, T, slice_=None, label='Burst search', verbose=True)

	Sliding window burst search. Pure python implementation.

Finds bursts in the array time (int64). A burst starts when the photon rate
is above a minimum threshold, and ends when the rate falls below the same
threshold. The rate-threshold is defined by the ratio m/T (m photons
in a time interval T). A burst is discarded if it has less than L
photons.

	Parameters

	
	times (array, int64) – array of timestamps on which to perform the search

	L (int) – minimum number of photons in a bursts. Bursts with size
(or counts) < L are discarded.

	m (int) – number of consecutive photons used to compute the rate.

	T (float) – max time separation of m photons to be inside a burst

	slice_ (tuple) – 2-element tuple used to slice times

	label (string) – a label printed when the function is called

	verbose (bool) – if False, the function does not print anything.

	Returns

	Array of burst data Nx4, type int64.
Column order is: istart, istop, start, stop.

	
fretbursts.phtools.burstsearch.count_ph_in_bursts(bursts, mask)

	Counts number of photons in each burst counting only photons in mask.

This function takes a Bursts object and a boolean mask (photon
selection) and computes the number of photons selected by the mask.
It is used, for example, to count donor and acceptor photons
in each burst.

For a multi-channel version see mch_count_ph_in_bursts_py().

	Parameters

	
	bursts (Bursts object) – the bursts used as input

	mask (1D boolean array) – the photon mask. The boolean mask must be
of the same size of the timestamp array used for burst search.

	Returns

	A 1D array containing the number of photons in each burst
counting only photons in the selection mask.

	
fretbursts.phtools.burstsearch.mch_count_ph_in_bursts_py(Mburst, Mask)

	Counts number of photons in each burst counting only photons in Mask.

This multi-channel function takes a list of a Bursts objects and
photon masks and computes the number of photons selected by the mask
in each channel.

It is used, for example, to count donor and acceptor photons in
each burst.

For a single-channel version see count_ph_in_bursts_py().

	Parameters

	
	Mburst (list Bursts objects) – a list of bursts collections, one per ch.

	Mask (list of 1D boolean arrays) – a list of photon masks (one per ch),
For each channel, the boolean mask must be of the same size of the
timestamp array used for burst search.

	Returns

	A list of 1D array, each containing the number of photons
in each burst counting only photons in the selection mask.

 FRETBursts Cython extensions

FRETBursts Cython extensions

Cython [http://cython.org/] is a tool that, among other things, allows
to translate annotated python code into C code.
The C code can be then compiled into a dynamic library and transparently
called from python like any other python library, but with the advantage
of a much higher execution speed.

For some core burst-search functions FRETBursts includes both a pure pyhton
and a cython version. At import time, the code looks for the
compiled version and, if not found, falls back to the pure python version.
Therefore, although the compiled cython version is completely optional,
it allows to gain significant execution speed in core functions that are
potentially executed many times.

Usually the cython extensions are compiled during installation.
To manually build the extensions type:

python setup.py build

from the FRETBursts source folder.

 The “Data()” class

The “Data()” class

The Data class is the main container for smFRET measurements.
It contains timestamps, detectors and all the results of data processing
such as background estimation, burst data, fitted FRET and so on.

The reference documentation of the class follows.

Contents

	The “Data()” class

	“Data()” class: description and attributes

	Summary information

	Analysis methods

	Burst corrections

	Correction factors

	Correction methods

	Burst selection methods

	Fitting methods

	Data access methods

“Data()” class: description and attributes

A description of the Data class and its main attributes.

	
class fretbursts.burstlib.Data(leakage=0.0, gamma=1.0, dir_ex=0.0, **kwargs)

	Container for all the information (timestamps, bursts) of a dataset.

Data() contains all the information of a dataset (name, timestamps, bursts,
correction factors) and provides several methods to perform analysis
(background estimation, burst search, FRET fitting, etc…).

When loading a measurement file a Data() object is created by one
of the loader functions in loaders.py. Data() objects can be also
created with Data.copy(), Data.fuse_bursts() or
Data.select_bursts().

To add or delete data-attributes use .add() or .delete() methods.
All the standard data-attributes are listed below.

Note

Attributes of type “list” contain one element per channel.
Each element, in turn, can be an array. For example .ph_times_m[i]
is the array of timestamps for channel i; or .nd[i] is the array
of donor counts in each burst for channel i.

Measurement attributes

	
fname

	string – measurements file name

	
nch

	int – number of channels

	
clk_p

	float – clock period in seconds for timestamps in ph_times_m

	
ph_times_m

	list – list of timestamp arrays (int64). Each array
contains all the timestamps (donor+acceptor) in one channel.

	
A_em

	list – list of boolean arrays marking acceptor timestamps. Each
array is a boolean mask for the corresponding ph_times_m array.

	
leakage

	float or array of floats – leakage (or bleed-through) fraction.
May be scalar or same size as nch.

	
gamma

	float or array of floats – gamma factor.
May be scalar or same size as nch.

	
D_em

	list of boolean arrays – [ALEX-only]
boolean mask for .ph_times_m[i] for donor emission

	
D_ex, A_ex

	list of boolean arrays – [ALEX-only]
boolean mask for .ph_times_m[i] during donor or acceptor
excitation

	
D_ON, A_ON

	2-element tuples of int – [ALEX-only]
start-end values for donor and acceptor excitation selection.

	
alex_period

	int – [ALEX-only]
duration of the alternation period in clock cycles.

Background Attributes

The background is computed with Data.calc_bg()
and is estimated in chunks of equal duration called background periods.
Estimations are performed in each spot and photon stream.
The following attributes contain the estimated background rate.

	
bg

	dict – background rates for the different photon streams,
channels and background periods. Keys are Ph_sel objects
and values are lists (one element per channel) of arrays (one
element per background period) of background rates.

	
bg_mean

	dict – mean background rates across the entire measurement
for the different photon streams and channels. Keys are Ph_sel
objects and values are lists (one element per channel) of
background rates.

	
nperiods

	int – number of periods in which timestamps are split for
background calculation

	
bg_fun

	function – function used to compute the background rates

	
Lim

	list – each element of this list is a list of index pairs for
.ph_times_m[i] for first and last photon in each period.

	
Ph_p

	list – each element in this list is a list of timestamps pairs
for first and last photon of each period.

	
bg_ph_sel

	Ph_sel object – photon selection used by Lim and Ph_p.
See fretbursts.ph_sel for details.

	
Th_us

	dict – thresholds in us used to select the tail of the
interphoton delay distribution. Keys are Ph_sel objects
and values are lists (one element per channel) of arrays (one
element per background period).

Additionlly, there are a few deprecated attributes (bg_dd, bg_ad,
bg_da, bg_aa, rate_dd, rate_ad, rate_da, rate_aa and rate_m)
which will be removed in a future version.
Please use Data.bg and Data.bg_mean instead.

Burst search parameters (user input)

These are the parameters used to perform the burst search
(see burst_search()).

	
ph_sel

	Ph_sel object – photon selection used for burst search.
See fretbursts.ph_sel for details.

	
m

	int – number of consecutive timestamps used to compute the
local rate during burst search

	
L

	int – min. number of photons for a burst to be identified and saved

	
P

	float, probability – valid values [0..1].
Probability that a burst-start is due to a Poisson background.
The employed Poisson rate is the one computed by .calc_bg().

	
F

	float – (F * background_rate) is the minimum rate for burst-start

Burst search data (available after burst search)

When not specified, parameters marked as (list of arrays) contains arrays
with one element per bursts. mburst arrays contain one “row” per burst.
TT arrays contain one element per period (see above: background
attributes).

	
mburst

	list of Bursts objects – list Bursts() one element per channel.
See fretbursts.phtools.burstsearch.Bursts.

	
TT

	list of arrays – list of arrays of T values (in sec.). A T
value is the maximum delay between m photons to have a
burst-start. Each channels has an array of T values, one for
each background “period” (see above).

	
T

	array – per-channel mean of TT

	
nd, na

	list of arrays – number of donor or acceptor photons during
donor excitation in each burst

	
nt

	list of arrays – total number photons (nd+na+naa)

	
naa

	list of arrays – number of acceptor photons in each burst
during acceptor excitation [ALEX only]

	
nar

	list of arrays – number of acceptor photons in each burst
during donor excitation, not corrected for D-leakage and
A-direct-excitation. [PAX only]

	
bp

	list of arrays – time period for each burst. Same shape as nd.
This is needed to identify the background rate for each burst.

	
bg_bs

	list – background rates used for threshold computation in burst
search (is a reference to bg, bg_dd or bg_ad).

	
fuse

	None or float – if not None, the burst separation in ms below
which bursts have been fused (see .fuse_bursts()).

	
E

	list – FRET efficiency value for each burst:
E = na/(na + gamma*nd).

	
S

	list – stoichiometry value for each burst:
S = (gamma*nd + na) /(gamma*nd + na + naa)

Summary information

List of Data attributes and
methods providing summary information on the measurement:

	
class fretbursts.burstlib.Data

	
	
time_max

	The last recorded time in seconds.

	
time_min

	The first recorded time in seconds.

	
ph_data_sizes

	Array of total number of photons (ph-data) for each channel.

	
num_bursts

	Array of number of bursts in each channel.

	
burst_sizes(gamma=1.0, add_naa=False, beta=1.0, donor_ref=True)

	Return gamma corrected burst sizes for all the channel.

Compute burst sizes by calling, for each channel,
burst_sizes_ich().

See burst_sizes_ich() for description of the arguments.

	Returns

	List of arrays of burst sizes, one array per channel.

	
burst_sizes_pax_ich(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), naa_aexonly=False, naa_comp=False, na_comp=False, gamma=1.0, beta=1.0, donor_ref=True)

	Return different definitions of PAX burst sizes for channel ich.

There are 4 basic “terms” corresponding to the 4 photon streams:
nd, na, nda, naa. Which term is included is defined by
the ph_sel argument (by default all are included).
The other arguments specify the various corrections for each term.

	Parameters

	
	ich (int) – the spot number, only relevant for multi-spot.
In single-spot data there is only one channel (ich=0)
so this argument may be omitted. Default 0.

	gamma (float) – coefficient for gamma correction of burst
sizes. Default: 1. For more info see explanation above.

	beta (float) – beta correction factor used for the DAexAem term.

	donor_ref (bool) – True or False select different conventions
for burst size correction. For details see
fretbursts.burstlib.Data.burst_sizes_ich().

	ph_sel (Ph_sel object) – defines which terms are included in the
burst size.

	na_comp (bool) – If True, multiply the na term by (1 + Wa/Wd),
where Wa and Wd are the D and A alternation durations
(typically Wa/Wd = 1).

	naa_aexonly (bool) – if True, the naa term is corrected to
include only A emission due to A excitation.
If False, the naa term includes all the counts in DAexAem.
The naa term also depends on the naa_comp argument.

	naa_comp (bool) – If True, multiply the naa term
by (1 + Wa/Wd),
where Wa and Wd are the D and A alternation durations
(typically Wa/Wd = 1). The naa term also depends on
the naa_aexonly argument.

	Returns

	Array of burst sizes for channel ich.

Examples

Burst sizes with all streams and no correction:

Data.burst_sizes_pax_ich(ph_sel=Ph_sel('all'))

\[F_{D_{ex}D_{em}} + F_{DA_{ex}D_{em}} +
F_{FRET} + F_{DA_{ex}A_{em}}\]

Burst sizes with all streams and all corrections:

Data.burst_sizes_pax_ich(ph_sel=Ph_sel('all'), na_comp=True,
 aa_aexonly=True, naa_comp=True)

\[\gamma (F_{D_{ex}D_{em}} + F_{DA_{ex}D_{em}}) +
\left(1 + \frac{W_A}{W_D} \right) \,
(F_{FRET} +
 (F_{DA_{ex}A_{em}} - F_{D_{ex}A_{em}})\,\beta^{-1})\]

See also

Data.burst_sizes_ich()

	
burst_sizes_ich(ich=0, gamma=1.0, add_naa=False, beta=1.0, donor_ref=True)

	Return gamma corrected burst sizes for channel ich.

If donor_ref == True (default) the gamma corrected burst size is
computed according to:

1) nd + na / gamma

Otherwise, if donor_ref == False, the gamma corrected burst size is:

2) nd * gamma + na

With the definition (1) the corrected burst size is equal to the raw
burst size for zero-FRET or D-only bursts (that’s why is donor_ref).
With the definition (2) the corrected burst size is equal to the raw
burst size for 100%-FRET bursts.

In an ALEX measurement, use add_naa = True to add counts from
AexAem stream to the returned burst size. The argument gamma and
beta are used to correctly scale naa so that it become
commensurate with the Dex corrected burst size. In particular,
when using definition (1) (i.e. donor_ref = True), the total
burst size is:

(nd + na/gamma) + naa / (beta * gamma)

Conversely, when using definition (2) (donor_ref = False), the
total burst size is:

(nd * gamma + na) + naa / beta

	Parameters

	
	ich (int) – the spot number, only relevant for multi-spot.
In single-spot data there is only one channel (ich=0)
so this argument may be omitted. Default 0.

	add_naa (boolean) – when True, add a term for AexAem photons when
computing burst size. Default False.

	gamma (float) – coefficient for gamma correction of burst
sizes. Default: 1. For more info see explanation above.

	beta (float) – beta correction factor used for the AexAem term
of the burst size. Default 1. If add_naa = False or
measurement is not ALEX this argument is ignored.
For more info see explanation above.

	donor_ref (bool) – select the convention for burst size correction.
See details above in the function description.

	Returns

	Array of burst sizes for channel ich.

	
burst_widths

	List of arrays of burst duration in seconds. One array per channel.

	
ph_in_bursts_ich(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))

	Return timestamps of photons inside bursts for channel ich.

	Returns

	Array of photon timestamps in channel ich and photon
selection ph_sel that are inside any burst.

	
ph_in_bursts_mask_ich(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))

	Return mask of all photons inside bursts for channel ich.

	Returns

	Boolean array for photons in channel ich and photon
selection ph_sel that are inside any burst.

	
status(add='', noname=False)

	Return a string with burst search, corrections and selection info.

	
name

	Measurement name – last subfolder + file name with no extension.

	
Name(add='')

	Return short filename + status information.

Analysis methods

The following methods perform background estimation, burst search and
burst-data calculations:

	Data.calc_bg()

	Data.burst_search()

	Data.calc_fret()

	Data.calc_ph_num()

	Data.fuse_bursts()

	Data.calc_sbr()

	Data.calc_max_rate()

The methods documentation follows:

	
class fretbursts.burstlib.Data

	
	
calc_bg(fun, time_s=60, tail_min_us=500, F_bg=2, error_metrics=None, fit_allph=True)

	Compute time-dependent background rates for all the channels.

Compute background rates for donor, acceptor and both detectors.
The rates are computed every time_s seconds, allowing to
track possible variations during the measurement.

	Parameters

	
	fun (function) – function for background estimation (example
bg.exp_fit)

	time_s (float, seconds) – compute background each time_s seconds

	tail_min_us (float, tuple or string) – min threshold in us for
photon waiting times to use in background estimation.
If float is the same threshold for ‘all’, DD, AD and AA photons
and for all the channels.
If a 3 or 4 element tuple, each value is used for ‘all’, DD, AD
or AA photons, same value for all the channels.
If ‘auto’, the threshold is computed for each stream (‘all’,
DD, DA, AA) and for each channel as bg_F * rate_ml0.
rate_ml0 is an initial estimation of the rate performed using
bg.exp_fit() and a fixed threshold (default 250us).

	F_bg (float) – when tail_min_us is ‘auto’, is the factor by which
the initial background estimation if multiplied to compute the
threshold.

	error_metrics (string) – Specifies the error metric to use.
See fretbursts.background.exp_fit() for more details.

	fit_allph (bool) – if True (default) the background for the
all-photon is fitted. If False it is computed as the sum of
backgrounds in all the other streams.

The background estimation functions are defined in the module
background (conventionally imported as bg).

Example

Compute background with bg.exp_fit (inter-photon delays MLE
tail fitting), every 30s, with automatic tail-threshold:

d.calc_bg(bg.exp_fit, time_s=20, tail_min_us='auto')

	Returns

	None, all the results are saved in the object itself.

	
burst_search(L=None, m=10, F=6.0, P=None, min_rate_cps=None, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), compact=False, index_allph=True, c=-1, computefret=True, max_rate=False, dither=False, pure_python=False, verbose=False, mute=False, pax=False)

	Performs a burst search with specified parameters.

This method performs a sliding-window burst search without
binning the timestamps. The burst starts when the rate of m
photons is above a minimum rate, and stops when the rate falls below
the threshold. The result of the burst search is stored in the
mburst attribute (a list of Bursts objects, one per channel)
containing start/stop times and indexes. By default, after burst
search, this method computes donor and acceptor counts, it applies
burst corrections (background, leakage, etc…) and computes
E (and S in case of ALEX). You can skip these steps by passing
computefret=False.

The minimum rate can be explicitly specified with the min_rate_cps
argument, or computed as a function of the background rate with the
F argument.

	Parameters

	
	m (int) – number of consecutive photons used to compute the
photon rate. Typical values 5-20. Default 10.

	L (int or None) – minimum number of photons in burst. If None
(default) L = m is used.

	F (float) – defines how many times higher than the background rate
is the minimum rate used for burst search
(min rate = F * bg. rate), assuming that P = None (default).
Typical values are 3-9. Default 6.

	P (float) – threshold for burst detection expressed as a
probability that a detected bursts is not due to a Poisson
background. If not None, P overrides F. Note that the
background process is experimentally super-Poisson so this
probability is not physically very meaningful. Using this
argument is discouraged.

	min_rate_cps (float or list/array) – minimum rate in cps for burst
start. If not None, it has the precedence over P and F.
If non-scalar, contains one rate per each multispot channel.
Typical values range from 20e3 to 100e3.

	ph_sel (Ph_sel object) – defines the “photon selection” (or stream)
to be used for burst search. Default: all photons.
See fretbursts.ph_sel for details.

	compact (bool) – if True, a photon selection of only one excitation
period is required and the timestamps are “compacted” by
removing the “gaps” between each excitation period.

	index_allph (bool) – if True (default), the indexes of burst start
and stop (istart, istop) are relative to the full
timestamp array. If False, the indexes are relative to
timestamps selected by the ph_sel argument.

	c (float) – correction factor used in the rate vs time-lags relation.
c affects the computation of the burst-search parameter T.
When F is not None, T = (m - 1 - c) / (F * bg_rate).
When using min_rate_cps, T = (m - 1 - c) / min_rate_cps.

	computefret (bool) – if True (default) compute donor and acceptor
counts, apply corrections (background, leakage, direct
excitation) and compute E (and S). If False, skip all these
steps and stop just after the initial burst search.

	max_rate (bool) – if True compute the max photon rate inside each
burst using the same m used for burst search. If False
(default) skip this step.

	dither (bool) – if True applies dithering corrections to burst
counts. Default False. See Data.dither().

	pure_python (bool) – if True, uses the pure python functions even
when optimized Cython functions are available.

	pax (bool) – this has effect only if measurement is PAX.
In this case, when True computes E using a PAX-enhanced
formula: (2 na) / (2 na + nd + nda).
Otherwise use the usual usALEX formula: na / na + nd.
Quantities nd/na are D/A burst counts during D excitation
period, while nda is D emission during A excitation period.

Note

when using P or F the background rates are needed, so
.calc_bg() must be called before the burst search.

Example

d.burst_search(m=10, F=6)

	Returns

	None, all the results are saved in the Data object.

	
calc_fret(count_ph=False, corrections=True, dither=False, mute=False, pure_python=False, pax=False)

	Compute FRET (and stoichiometry if ALEX) for each burst.

This is an high-level functions that can be run after burst search.
By default, it will count Donor and Acceptor photons, perform
corrections (background, leakage), and compute gamma-corrected
FRET efficiencies (and stoichiometry if ALEX).

	Parameters

	
	count_ph (bool) – if True (default), calls calc_ph_num() to
counts Donor and Acceptor photons in each bursts

	corrections (bool) – if True (default), applies background and
bleed-through correction to burst data

	dither (bool) – whether to apply dithering to burst size.
Default False.

	mute (bool) – whether to mute all the printed output. Default False.

	pure_python (bool) – if True, uses the pure python functions even
when the optimized Cython functions are available.

	pax (bool) – this has effect only if measurement is PAX.
In this case, when True computes E using a PAX-enhanced
formula: (2 na) / (2 na + nd + nda).
Otherwise use the usual usALEX formula: na / na + nd.
Quantities nd/na are D/A burst counts during D excitation
period, while nda is D emission during A excitation period.

	Returns

	None, all the results are saved in the object.

	
calc_ph_num(alex_all=False, pure_python=False)

	Computes number of D, A (and AA) photons in each burst.

	Parameters

	
	alex_all (bool) – if True and self.ALEX is True, computes also the
donor channel photons during acceptor excitation (nda)

	pure_python (bool) – if True, uses the pure python functions even
when the optimized Cython functions are available.

	Returns

	Saves nd, na, nt (and eventually naa, nda) in self.
Returns None.

	
fuse_bursts(ms=0, process=True, mute=False)

	Return a new Data object with nearby bursts fused together.

	Parameters

	
	ms (float) – fuse all burst separated by less than ms millisecs.
If < 0 no burst is fused. Note that with ms = 0, overlapping
bursts are fused.

	process (bool) – if True (default), reprocess the burst data in
the new object applying corrections and computing FRET.

	mute (bool) – if True suppress any printed output.

	
calc_sbr(ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), gamma=1.0)

	Return Signal-to-Background Ratio (SBR) for each burst.

	Parameters

	
	ph_sel (Ph_sel object) – object defining the photon selection
for which to compute the sbr. Changes the photons used for
burst size and the corresponding background rate. Valid values
here are Ph_sel(‘all’), Ph_sel(Dex=’Dem’), Ph_sel(Dex=’Aem’).
See fretbursts.ph_sel for details.

	gamma (float) – gamma value used to compute corrected burst size
in the case ph_sel is Ph_sel(‘all’). Ignored otherwise.

	Returns

	A list of arrays (one per channel) with one value per burst.
The list is also saved in sbr attribute.

	
calc_max_rate(m, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), compact=False, c=1)

	Compute the max m-photon rate reached in each burst.

	Parameters

	
	m (int) – number of timestamps to use to compute the rate.
As for burst search, typical values are 5-20.

	ph_sel (Ph_sel object) – object defining the photon selection.
See fretbursts.ph_sel for details.

	c (float) – this parameter is used in the definition of the
rate estimator which is (m - 1 - c) / t[last] - t[first].
For more details see phtools.phrates.mtuple_rates().

Burst corrections

Correction factors

The following are the various burst correction factors. They are Data
properties, so setting their value automatically updates all the burst
quantities (including E and S).

	
class fretbursts.burstlib.Data

	
	
gamma

	Gamma correction factor (compensates DexDem and DexAem unbalance).

	
leakage

	Spectral leakage (bleed-through) of D emission in the A channel.

	
dir_ex

	Direct excitation correction factor.

	
chi_ch

	Per-channel relative gamma factor.

Correction methods

List of Data methods used to apply burst corrections.

	
class fretbursts.burstlib.Data

	
	
background_correction(relax_nt=False, mute=False)

	Apply background correction to burst sizes (nd, na,…)

	
leakage_correction(mute=False)

	Apply leakage correction to burst sizes (nd, na,…)

	
dither(lsb=2, mute=False)

	Add dithering (uniform random noise) to burst counts (nd, na,…).

The dithering amplitude is the range -0.5*lsb .. 0.5*lsb.

Burst selection methods

Data methods that allow to filter bursts according to different rules.
See also Burst selection.

	
class fretbursts.burstlib.Data

	
	
select_bursts(filter_fun, negate=False, computefret=True, args=None, **kwargs)

	Return an object with bursts filtered according to filter_fun.

This is the main method to select bursts according to different
criteria. The selection rule is defined by the selection function
filter_fun. FRETBursts provides a several predefined selection
functions see Burst selection. New selection
functions can be defined and passed to this method to implement
arbitrary selection rules.

	Parameters

	
	filter_fun (fuction) – function used for burst selection

	negate (boolean) – If True, negates (i.e. take the complementary)
of the selection returned by filter_fun. Default False.

	computefret (boolean) – If True (default) recompute donor and
acceptor counts, corrections and FRET quantities (i.e. E, S)
in the new returned object.

	args (tuple or None) – positional arguments for filter_fun()

	kwargs:

	Additional keyword arguments passed to filter_fun().

	Returns

	A new Data object containing only the selected bursts.

Note

In order to save RAM, the timestamp arrays (ph_times_m)
of the new Data() points to the same arrays of the original
Data(). Conversely, all the bursts data (mburst, nd, na,
etc…) are new distinct objects.

	
select_bursts_mask(filter_fun, negate=False, return_str=False, args=None, **kwargs)

	Returns mask arrays to select bursts according to filter_fun.

The function filter_fun is called to compute the mask arrays for
each channel.

This method is useful when you want to apply a selection from one
object to a second object. Otherwise use Data.select_bursts().

	Parameters

	
	filter_fun (fuction) – function used for burst selection

	negate (boolean) – If True, negates (i.e. take the complementary)
of the selection returned by filter_fun. Default False.

	return_str – if True return, for each channel, a tuple with
a bool array and a string that can be added to the measurement
name to indicate the selection. If False returns only
the bool array. Default False.

	args (tuple or None) – positional arguments for filter_fun()

	kwargs:

	Additional keyword arguments passed to filter_fun().

	Returns

	A list of boolean arrays (one per channel) that define the burst
selection. If return_str is True returns a list of tuples, where
each tuple is a bool array and a string.

See also

Data.select_bursts(), Data.select_bursts_mask_apply()

	
select_bursts_mask_apply(masks, computefret=True, str_sel='')

	Returns a new Data object with bursts selected according to masks.

This method select bursts using a list of boolean arrays as input.
Since the user needs to create the boolean arrays first, this method
is useful when experimenting with new selection criteria that don’t
have a dedicated selection function. Usually, however, it is easier
to select bursts through Data.select_bursts() (using a
selection function).

	Parameters

	
	masks (list of arrays) – each element in this list is a boolean
array that selects bursts in a channel.

	computefret (boolean) – If True (default) recompute donor and
acceptor counts, corrections and FRET quantities (i.e. E, S)
in the new returned object.

	Returns

	A new Data object containing only the selected bursts.

Note

In order to save RAM, the timestamp arrays (ph_times_m)
of the new Data() points to the same arrays of the original
Data(). Conversely, all the bursts data (mburst, nd, na,
etc…) are new distinct objects.

See also

Data.select_bursts(), Data.select_mask()

Fitting methods

Some fitting methods for burst data. Note that E and S histogram fitting
with generic models is now handled with the new
fitting framework.

	
class fretbursts.burstlib.Data

	
	
fit_E_generic(E1=-1, E2=2, fit_fun=<function two_gaussian_fit_hist>, weights=None, gamma=1.0, **fit_kwargs)

	Fit E in each channel with fit_fun using burst in [E1,E2] range.
All the fitting functions are defined in
fretbursts.fit.gaussian_fitting.

	Parameters

	
	weights (string or None) – specifies the type of weights
If not None weights will be passed to
fret_fit.get_weights(). weights can be not-None only when
using fit functions that accept weights (the ones ending in
_hist or _EM)

	gamma (float) – passed to fret_fit.get_weights() to compute
weights

All the additional arguments are passed to fit_fun. For example p0
or mu_fix can be passed (see fit.gaussian_fitting for details).

Note

Use this method for CDF/PDF or hist fitting.
For EM fitting use fit_E_two_gauss_EM().

	
fit_E_m(E1=-1, E2=2, weights='size', gamma=1.0)

	Fit E in each channel with the mean using bursts in [E1,E2] range.

Note

This two fitting are equivalent (but the first is much faster):

fit_E_m(weights='size')
fit_E_minimize(kind='E_size', weights='sqrt')

However fit_E_minimize() does not provide a model curve.

	
fit_E_ML_poiss(E1=-1, E2=2, method=1, **kwargs)

	ML fit for E modeling size ~ Poisson, using bursts in [E1,E2] range.

	
fit_E_minimize(kind='slope', E1=-1, E2=2, **kwargs)

	Fit E using method kind (‘slope’ or ‘E_size’) and bursts in [E1,E2]
If kind is ‘slope’ the fit function is fret_fit.fit_E_slope()
If kind is ‘E_size’ the fit function is fret_fit.fit_E_E_size()
Additional arguments in kwargs are passed to the fit function.

	
fit_E_two_gauss_EM(fit_func=<function two_gaussian_fit_EM>, weights='size', gamma=1.0, **kwargs)

	Fit the E population to a Gaussian mixture model using EM method.
Additional arguments in kwargs are passed to the fit_func().

Data access methods

The following methods are used to access (or iterate over) the arrays of timestamps
(for different photon streams), timestamps masks and burst data.

	Data.get_ph_times()

	Data.iter_ph_times()

	Data.get_ph_mask()

	Data.iter_ph_masks()

	Data.iter_bursts_ph()

	Data.expand()

	Data.copy()

	Data.slice_ph()

The methods documentation follows:

	
class fretbursts.burstlib.Data

	
	
get_ph_times(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), compact=False)

	Returns the timestamps array for channel ich.

This method always returns in-memory arrays, even when ph_times_m
is a disk-backed list of arrays.

	Parameters

	
	ph_sel (Ph_sel object) – object defining the photon selection.
See fretbursts.ph_sel for details.

	compact (bool) – if True, a photon selection of only one excitation
period is required and the timestamps are “compacted” by
removing the “gaps” between each excitation period.

	
iter_ph_times(ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), compact=False)

	Iterator that returns the arrays of timestamps in .ph_times_m.

	Parameters

	Same arguments as :meth:`get_ph_mask` except for `ich`.

	
get_ph_mask(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))

	Returns a mask for ph_sel photons in channel ich.

The masks are either boolean arrays or slices (full or empty). In
both cases they can be used to index the timestamps of the
corresponding channel.

	Parameters

	ph_sel (Ph_sel object) – object defining the photon selection.
See fretbursts.ph_sel for details.

	
iter_ph_masks(ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))

	Iterator returning masks for ph_sel photons.

	Parameters

	ph_sel (Ph_sel object) – object defining the photon selection.
See fretbursts.ph_sel for details.

	
iter_bursts_ph(ich=0)

	Iterate over (start, stop) indexes to slice photons for each burst.

	
expand(ich=0, alex_naa=False, width=False)

	Return per-burst D and A sizes (nd, na) and their background counts.

This method returns for each bursts the corrected signal counts and
background counts in donor and acceptor channels. Optionally, the
burst width is also returned.

	Parameters

	
	ich (int) – channel for the bursts (can be not 0 only in multi-spot)

	alex_naa (bool) – if True and self.ALEX, returns burst sizes and
background also for acceptor photons during accept. excitation

	width (bool) – whether return the burst duration (in seconds).

	Returns

	List of arrays – nd, na, donor bg, acceptor bg.
If alex_naa is True returns: nd, na, naa, bg_d, bg_a, bg_aa.
If width is True returns the bursts duration (in sec.) as last
element.

	
copy(mute=False)

	Copy data in a new object. All arrays copied except for ph_times_m

	
slice_ph(time_s1=0, time_s2=None, s='slice')

	Return a new Data object with ph in [time_s1,`time_s2`] (seconds)

If ALEX, this method must be called right after
fretbursts.loader.alex_apply_periods() (with delete_ph_t=True)
and before any background estimation or burst search.

 FRETBursts Dependencies

FRETBursts Dependencies

For documentation purposes, this is the list of dependencies to run FRETBursts:

	Python 3.5+ or 2.7 (deprecated)

	Numpy 1.6+

	Scipy 0.17+

	Matplotlib 1.5+ or 2+, with QT4 backend (either PyQT4 or PySide) or QT5.

	PyTables 3.x. To load/save the Photon-HDF5.

	lmfit 0.9.3+, used for flexible histogram fitting.

	Jupyter environment: notebook, ipython, ipywidgets.

	Pandas, for nice table representation and exporting data.

If you want to compile the cython extensions (optional) you also need:

	cython 0.20 or newer.

	a C compiler

For developing FRETBursts you should also install

	sphinx 1.3+ (we use napoleon extension) to build this documentation.

	pytest to execute the unit tests.

Note that, unless you know what you are doing, you should never install these
dependencies manually. Use a scientific python distribution like
Continuum Anaconda [https://store.continuum.io/cshop/anaconda/]
instead.

 Exponential fitting

Exponential fitting

Generic functions to fit exponential populations.

These functions can be used directly, or, in a typical FRETBursts workflow
they are passed to higher level methods.

See also:

	Background estimation

	
fretbursts.fit.exp_fitting.expon_fit(s, s_min=0, offset=0.5, calc_residuals=True)

	Fit sample s to an exponential distribution using the ML estimator.

This function computes the rate (Lambda) using the maximum likelihood (ML)
estimator of the mean waiting-time (Tau), that for an exponentially
distributed sample is the sample-mean.

	Parameters

	
	s (array) – array of exponetially-distributed samples

	s_min (float) – all samples < s_min are discarded
(s_min must be >= 0).

	offset (float) – offset for computing the CDF. See get_ecdf().

	calc_residuals (bool) – if True compute the residuals of the fitted
exponential versus the empirical CDF.

	Returns

	A 4-tuple of the fitted rate (1/life-time), residuals array,
residuals x-axis array, sample size after threshold.

	
fretbursts.fit.exp_fitting.expon_fit_cdf(s, s_min=0, offset=0.5, calc_residuals=True)

	Fit of an exponential model to the empirical CDF of s.

This function computes the rate (Lambda) fitting a line (linear
regression) to the log of the empirical CDF.

	Parameters

	
	s (array) – array of exponetially-distributed samples

	s_min (float) – all samples < s_min are discarded
(s_min must be >= 0).

	offset (float) – offset for computing the CDF. See get_ecdf().

	calc_residuals (bool) – if True compute the residuals of the fitted
exponential versus the empirical CDF.

	Returns

	A 4-tuple of the fitted rate (1/life-time), residuals array,
residuals x-axis array, sample size after threshold.

	
fretbursts.fit.exp_fitting.expon_fit_hist(s, bins, s_min=0, weights=None, offset=0.5, calc_residuals=True)

	Fit of an exponential model to the histogram of s using least squares.

	Parameters

	
	s (array) – array of exponetially-distributed samples

	bins (float or array) – if float is the bin width, otherwise is the
array of bin edges (passed to numpy.histogram)

	s_min (float) – all samples < s_min are discarded
(s_min must be >= 0).

	weights (None or string) – if None no weights is applied.
if is ‘hist_counts’, each bin has a weight equal to its counts
if is ‘inv_hist_counts’, the weight is the inverse of the counts.

	offset (float) – offset for computing the CDF. See get_ecdf().

	calc_residuals (bool) – if True compute the residuals of the fitted
exponential versus the empirical CDF.

	Returns

	A 4-tuple of the fitted rate (1/life-time), residuals array,
residuals x-axis array, sample size after threshold.

	
fretbursts.fit.exp_fitting.get_ecdf(s, offset=0.5)

	Return arrays (x, y) for the empirical CDF curve of sample s.

See the code for more info (is a one-liner!).

	Parameters

	
	s (array of floats) – sample

	offset (float, default 0.5) – Offset to add to the y values of the CDF

	Returns

	(x, y) (tuple of arrays) – the x and y values of the empirical CDF

	
fretbursts.fit.exp_fitting.get_residuals(s, tau_fit, offset=0.5)

	Returns residuals of sample s CDF vs an exponential CDF.

	Parameters

	
	s (array of floats) – sample

	tau_fit (float) – mean waiting-time of the exponential distribution
to use as reference

	offset (float) – Default 0.5. Offset to add to the empirical CDF.
See get_ecdf() for details.

	Returns

	residuals (array) – residuals of empirical CDF compared with analytical
CDF with time constant tau_fit.

 Description of the files

Description of the files

Here a brief descriprion of the main FRETBursts files.

burstlib.py

This module contains all the main FRETBursts analysis functions.

burstslib.py defines the fundamental object Data() that contains both the
experimental data (attributes) and the high-level analysis routines (methods).

Furthermore it loads all the remaining FRETBursts modules (except for
loaders.py).

For usage example see the IPython Notebooks in sub-folder “notebooks”.

loader.py

The loader module contains functions to load each supported data format.
The loader functions load data from a specific format and
return a new fretbursts.burstlib.Data() object containing the data.

This module contains the high-level function to load a data-file and
to return a Data() object. The low-level functions that perform the binary
loading and preprocessing can be found in the dataload folder.

select_bursts.py

See fretbursts.select_bursts.

burst_plot.py

This module defines all the plotting functions for the
fretbursts.burstlib.Data object.

The main plot function is dplot() that takes, as parameters, a Data()
object and a 1-ch-plot-function and creates a subplot for each channel.

The 1-ch plot functions are usually called through dplot but can also be
called directly to make a single channel plot.

The 1-ch plot functions names all start with the plot type (timetrace,
ratetrace, hist or scatter).

Example 1 - Plot the timetrace for all ch:

dplot(d, timetrace, scroll=True)

Example 2 - Plot a FRET histogramm for each ch with a fit overlay:

dplot(d, hist_fret, show_model=True)

For more examples refer to
FRETBurst notebooks [http://nbviewer.ipython.org/github/tritemio/FRETBursts_notebooks/tree/master/notebooks/].

background.py

Routines to compute the background from an array of timestamps. This module
is normally imported as bg when fretbursts is imported.

The important functions are exp_fit() and exp_cdf_fit() that
provide two (fast) algorithms to estimate the background without binning.
These functions are not usually called directly but passed to
Data.calc_bg() to compute the background of a measurement.

See also exp_hist_fit() for background estimation using an histogram fit.

phtools (folder)

This folder contains the core functions to manipulate timestamps,
including burst search and photon rates computations.
Additionally, data structures for storing and manipulating bursts data
are provided.

Burst search and photon counting functions (to count number of donor and acceptor
photons in each burts) are provided both as a pure python implementation and as
an optimized Cython (compiled) version. The cython version is usually 10 or 20
times faster. burstlib.py will load the Cython functions, falling back to the
pure python version if the compiled version is not found.

dataload (folder)

This folder contains one file per each supported data file.

Each file contains the binary load and preprocessing functions needed for
the specific format. Functions defined here are used by loader functions
in loaders.py to properly initialize a Data() variable.

fit (folder)

This folder contains generic fit functions for Gaussian and exponential fit
of a sample.

See Fit framework.

 Fit framework

Fit framework

This page contains only a general description of FRETBursts fitting
functionalities. The content of this page is:

Contents

	Fit framework

	Overview

	Fitting E or S histograms

	Lmfit introduction

	Legacy Fit functions

For the reference documentation for fitting multi-channel histograms see:

	MultiFitter reference documentation
	The MultiFitter class

	Model factory functions

	Utility functions

Overview

FRETBursts uses of the powerful lmfit [http://lmfit.github.io/lmfit-py/]
library for most fittings (like E or S histogram fitting).
Lmfit should be automatically installed when installing FRETBursts, but
in any case it is easily installable via pip install lmfit.
For more installation info see FRETBursts Installation.

FRETBursts requires lmfit version 0.8 or higher.

Fitting E or S histograms

The module fretbursts.mfit provides a class
fretbursts.mfit.MultiFitter
that allow to build histograms and
KDE [http://en.wikipedia.org/wiki/Kernel_density_estimation]
on a multi-channel sample population
(typically E or S values for each burst). The MultiFitter class can find
the max peak position of a KDE or fit the histogram with an arbitrary model.
A set of predefined models is provided to handle common cases.
Sensible defaults are applied but the user can control
every detail of the fit by setting initial values, parameter bounds
(min, max), algebraic constrains and so on. New models can be created by
composing simpler models (by using + operator). See the lmfit documentation
for more info on how to define
models [http://lmfit.github.io/lmfit-py/model.html]
and composite models [http://lmfit.github.io/lmfit-py/model.html#composite-models-adding-or-multiplying-models].

A convenience function fretbursts.burstlib_ext.burst_fitter() can be
used to create a MultiFitter object to fit either E or S. As an example
let suppose having a measurement loaded in the variable d. To create a
fitter object and compute the FRET histogram we execute:

bext.burst_fitter(d) # Creates d.E_fitter
d.E_fitter.histogram() # Compute the histogram for all the channels

Now we fit the E histogram with a 2-Gaussians model:

d.E_fitter.fit_histogram(mfit.factory_two_gaussians)

And plot the histogram and the fitted model:

dplot(d, hist_fret, show_model=True)

More detailed example can be found in the
tutorials [https://github.com/OpenSMFS/FRETBursts_notebooks]
in notebooks on
us-ALEX analysis [http://nbviewer.ipython.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/FRETBursts%20-%20us-ALEX%20smFRET%20burst%20analysis.ipynb].

Lmfit introduction

Lmfit provides a simple and flexible interface for non-linear least squares
and other minimization methods. All the model parameters can be fixed/varied,
have bounds (min, max) or constrained to an algebraic expression.

Moreover lmfit provides a Model class and a set of built-in models
that allows to express curve-fitting problems in an compact and expressive
form. Basic models (such as a Gaussian peak) and be composed allowing
an easy definitions of a variety of models (2 or 3 Gaussians).

For more information refer to the official
lmfit documentation [http://lmfit.github.io/lmfit-py/].

Legacy Fit functions

A set of legacy functions used in versions of FRETBursts < 0.4
are defined in fretbursts/fit. This function are retained for backward
compatibility but should not be used in new analysis.

These are low-level (i.e. generic) fit functions to fit gaussian or
exponential models.

	Gaussian fitting

	Exponential fitting

 Direct FRET fitting

Direct FRET fitting

See also Fit framework

This module contains functions for direct fitting of burst populations
(FRET peaks) without passing through a FRET histogram.

This module provides a standard interface for different fitting algorithms.

	
fretbursts.fret_fit.fit_E_E_size(nd, na, weights=None, gamma=1.0, gamma_correct=False)

	Fit the E with least-square minimization of errors on burst E values.

	
fretbursts.fret_fit.fit_E_binom(nd, na, noprint=False, method='c', **kwargs)

	Fit the E with MLE using binomial distribution.
method (‘a’,’b’, or ‘c’) choose how to handle negative (nd,na) values.

	
fretbursts.fret_fit.fit_E_cdf(nd, na, gamma=1.0, **kwargs)

	Fit E using the CDF curve-fit (see gaussian_fit_cdf).
No weights are possible with this method.

	
fretbursts.fret_fit.fit_E_hist(nd, na, gamma=1.0, **kwargs)

	Fit E using the histogram curve-fit (see gaussian_fit_hist).
You can specify weights that will be passed to the histogram function.

	
fretbursts.fret_fit.fit_E_m(nd, na, weights=None, gamma=1.0, gamma_correct=False)

	Fit the E with a weighted mean of burst E values.

	
fretbursts.fret_fit.fit_E_poisson_na(nd, na, bg_a, **kwargs)

	Fit the E using MLE with na extracted from a Poisson.

	
fretbursts.fret_fit.fit_E_poisson_nd(nd, na, bg_d, **kwargs)

	Fit the E using MLE with nd extracted from a Poisson.

	
fretbursts.fret_fit.fit_E_poisson_nt(nd, na, bg_a, **kwargs)

	Fit the E using MLE with na extracted from a Poisson.

	
fretbursts.fret_fit.fit_E_slope(nd, na, weights=None, gamma=1.0)

	Fit E with a least-squares fitting of slope on (nd,na) plane.

	
fretbursts.fret_fit.get_dist_euclid(nd, na, E_fit=None, slope=None)

	Returns the euclidean distance of (nd,na) from a fit line.
The fit line is specified by slope or by E_fit. Intercept is always 0.

	
fretbursts.fret_fit.get_weights(nd, na, weights, naa=0, gamma=1.0, widths=None)

	Return burst weights computed according to different criteria.

The burst size is computed as nd*gamma + na + naa.

	Parameters

	
	nd, na, naa (1D arrays) – photon counts in each burst.

	gamma (float) – gamma factor used for corrected burst size.

	width (None array) – array of burst durations used when
weights=’brightness’

	weights (string or None) – type of weights, possible weights are:
‘size’ burst size, ‘size_min’ burst size - min(burst size),
‘size2’ (burst size)^2, ‘sqrt’ sqrt(burst size),
‘inv_size’ 1/(burst size), ‘inv_sqrt’ 1/sqrt(burst size),
‘cum_size’ CDF_of_burst_sizes(burst size),
‘cum_size2’ CDF_of_burst_sizes(burst size)^2,
‘brightness’ the burst size divided by the burst width.
If None returns uniform weights.

	widths (1D array) – bursts duration in seconds, needed only when
weights = ‘brightness’.

	Returns

	1D array of weights, one element per burst.

	
fretbursts.fret_fit.log_likelihood_binom(E, nd, na)

	Likelihood function for (nd,na) to be from a binom with p=E (no BG).

	
fretbursts.fret_fit.log_likelihood_poisson_na(E, nd, na, bg_a)

	Likelihood function for na extracted from Poisson. nd, na BG corrected.

	
fretbursts.fret_fit.log_likelihood_poisson_nd(E, nd, na, bg_d)

	Likelihood function for nd extracted from Poisson. nd, na BG corrected.

	
fretbursts.fret_fit.log_likelihood_poisson_nt(E, nd, na, bg_a)

	Likelihood function for na extracted from Poisson. nd, na BG corrected.

	
fretbursts.fret_fit.sim_nd_na(E, N=1000, size_mean=100)

	Simulate an exponential-size burst distribution with binomial (nd,na)

 FRET Correction Formulas

FRET Correction Formulas

The fretmath module contains functions to compute corrected FRET efficiency
from the proximity ratio and vice-versa.

For derivation see notebook: “Derivation of FRET and S correction formulas.ipynb”
(link [http://nbviewer.jupyter.org/github/tritemio/notebooks/blob/master/Derivation%20of%20FRET%20and%20S%20correction%20formulas.ipynb]).

	
fretbursts.fretmath.correct_E_gamma_leak_dir(Eraw, gamma=1, leakage=0, dir_ex_t=0)

	Compute corrected FRET efficency from proximity ratio Eraw.

For the inverse function see uncorrect_E_gamma_leak_dir().

	Parameters

	
	Eraw (float or array) – proximity ratio (only background correction,
no gamma, leakage or direct excitation)

	gamma (float) – gamma factor

	leakage (float) – leakage coefficient

	dir_ex_t (float) – coefficient expressing the direct excitation as
n_dir = dir_ex_t * (na + gamma*nd). In terms of physical
parameters it is the ratio of acceptor over donor absorption
cross-sections at the donor-excitation wavelength.

	Returns

	Corrected FRET effciency

	
fretbursts.fretmath.correct_S(Eraw, Sraw, gamma, leakage, dir_ex_t)

	Correct S values for gamma, leakage and direct excitation.

	Parameters

	
	Eraw (scalar or array) – uncorrected (“raw”) E after only background
correction (no gamma, leakage or direct excitation).

	Sraw (scalar or array) – uncorrected (“raw”) S after only background
correction (no gamma, leakage or direct excitation).

	gamma (float) – gamma factor.

	leakage (float) – donor emission leakage into the acceptor channel.

	dir_ex_t (float) – direct acceptor excitation by donor laser.
Defined as n_dir = dir_ex_t * (na + g nd). The dir_ex_t
coefficient is the ratio between D and A absorbtion cross-sections
at the donor-excitation wavelength.

	Returns

	Corrected S (stoichiometry), same size as Sraw.

	
fretbursts.fretmath.dir_ex_correct_E(Eraw, dir_ex_t)

	Apply direct excitation correction to the uncorrected FRET Eraw.

The coefficient dir_ex_t expresses the direct excitation as
n_dir = dir_ex_t * (na + gamma*nd). In terms of physical
parameters it is the ratio of acceptor over donor absorption
cross-sections at the donor-excitation wavelength.

For the inverse see dir_ex_uncorrect_E().

	
fretbursts.fretmath.dir_ex_uncorrect_E(E, dir_ex_t)

	Reverse direct excitation correction and return uncorrected FRET.

For the inverse see dir_ex_correct_E().

	
fretbursts.fretmath.gamma_correct_E(Eraw, gamma)

	Apply gamma correction to the uncorrected FRET Eraw.

For the inverse see gamma_uncorrect_E().

	
fretbursts.fretmath.gamma_uncorrect_E(E, gamma)

	Reverse gamma correction and return uncorrected FRET.

For the inverse see gamma_correct_E().

	
fretbursts.fretmath.leakage_correct_E(Eraw, leakage)

	Apply leakage correction to the uncorrected FRET Eraw.

For the inverse see leakage_uncorrect_E().

	
fretbursts.fretmath.leakage_uncorrect_E(E, leakage)

	Reverse leakage correction and return uncorrected FRET.

For the inverse see leakage_correct_E().

	
fretbursts.fretmath.test_fretmath()

	Run a few consistency checks for the correction functions.

	
fretbursts.fretmath.uncorrect_E_gamma_leak_dir(E, gamma=1, leakage=0, dir_ex_t=0)

	Compute proximity ratio from corrected FRET efficiency E.

This function is the inverse of correct_E_gamma_leak_dir().

	Parameters

	
	E (float or array) – corrected FRET efficiency

	gamma (float) – gamma factor

	leakage (float) – leakage coefficient

	dir_ex_t (float) – direct excitation coefficient expressed as
n_dir = dir_ex_t * (na + gamma*nd). In terms of physical
parameters it is the ratio of absorption cross-section at
donor-excitation wavelengths of acceptor over donor.

	Returns

	Proximity ratio (reverses gamma, leakage and direct excitation)

	
fretbursts.fretmath.uncorrect_S(E_R, S, gamma, L_k, d_dirT)

	Function used to test correct_S().

 Gaussian fitting

Gaussian fitting

This module provides functions to fit gaussian distributions and gaussian
distribution mixtures (2 components). These functions can be used directly,
or more often, in a typical FRETBursts workflow they are passed to higher
level methods like fretbursts.burstlib.Data.fit_E_generic().

Single Gaussian distribution fit:

	gaussian_fit_hist()

	gaussian_fit_cdf()

	gaussian_fit_pdf()

For 2-Gaussians fit we have the following models:

	two_gauss_mix_pdf(): PDF of 2-components Gaussians mixture

	two_gauss_mix_ab(): linear combination of 2 Gaussians

Main functions for mixture of 2 Gaussian distribution fit:

	two_gaussian_fit_hist() histogram fit using `leastsq`

	two_gaussian_fit_hist_min() histogram fit using `minimize`

	two_gaussian_fit_hist_min_ab() the same but using _ab model

	two_gaussian_fit_cdf() curve fit of the CDF

	two_gaussian_fit_EM() Expectation-Maximization fit

	two_gaussian_fit_EM_b() the same with boundaries

Also, some functions to fit 2-D gaussian distributions and mixtures are
implemented but not thoroughly tested.

The reference documentation for all the functions follows.

	
fretbursts.fit.gaussian_fitting.bound_check(val, bounds)

	Returns val clipped inside the interval bounds.

	
fretbursts.fit.gaussian_fitting.gaussian2d_fit(sx, sy, guess=[0.5, 1])

	2D-Gaussian fit of samples S using a fit to the empirical CDF.

	
fretbursts.fit.gaussian_fitting.gaussian_fit_cdf(s, mu0=0, sigma0=1, return_all=False, **leastsq_kwargs)

	Gaussian fit of samples s fitting the empirical CDF.
Additional kwargs are passed to the leastsq() function.
If return_all=False then return only the fitted (mu,sigma) values
If return_all=True (or full_output=True is passed to leastsq)
then the full output of leastsq and the histogram is returned.

	
fretbursts.fit.gaussian_fitting.gaussian_fit_curve(x, y, mu0=0, sigma0=1, a0=None, return_all=False, **kwargs)

	Gaussian fit of curve (x,y).
If a0 is None then only (mu,sigma) are fitted (to a gaussian density).
kwargs are passed to the leastsq() function.

If return_all=False then return only the fitted (mu,sigma) values
If return_all=True (or full_output=True is passed to leastsq)
then the full output of leastsq is returned.

	
fretbursts.fit.gaussian_fitting.gaussian_fit_hist(s, mu0=0, sigma0=1, a0=None, bins=array([-0.5, -0.499, -0.498, ..., 1.497, 1.498, 1.499]), return_all=False, leastsq_kwargs={}, weights=None, **kwargs)

	Gaussian fit of samples s fitting the hist to a Gaussian function.
If a0 is None then only (mu,sigma) are fitted (to a gaussian density).
kwargs are passed to the histogram function.
If return_all=False then return only the fitted (mu,sigma) values
If return_all=True (or full_output=True is passed to leastsq)
then the full output of leastsq and the histogram is returned.
weights optional weights for the histogram.

	
fretbursts.fit.gaussian_fitting.gaussian_fit_ml(s, mu_sigma_guess=[0.5, 1])

	Gaussian fit of samples s using the Maximum Likelihood (ML method).
Didactical, since scipy.stats.norm.fit() implements the same method.

	
fretbursts.fit.gaussian_fitting.gaussian_fit_pdf(s, mu0=0, sigma0=1, a0=1, return_all=False, leastsq_kwargs={}, **kwargs)

	Gaussian fit of samples s using a fit to the empirical PDF.
If a0 is None then only (mu,sigma) are fitted (to a gaussian density).
kwargs are passed to get_epdf().
If return_all=False then return only the fitted (mu,sigma) values
If return_all=True (or full_output=True is passed to leastsq)
then the full output of leastsq and the PDF curve is returned.

	
fretbursts.fit.gaussian_fitting.get_epdf(s, smooth=0, N=1000, smooth_pdf=False, smooth_cdf=True)

	Compute the empirical PDF of the sample s.

If smooth > 0 then apply a gaussian filter with sigma=smooth.
N is the number of points for interpolation of the CDF on a uniform range.

	
fretbursts.fit.gaussian_fitting.normpdf(x, mu=0, sigma=1.0)

	Return the normal pdf evaluated at x.

	
fretbursts.fit.gaussian_fitting.reorder_parameters(p)

	Reorder 2-gauss mix params to have the 1st component with smaller mean.

	
fretbursts.fit.gaussian_fitting.reorder_parameters_ab(p)

	Reorder 2-gauss mix params to have the 1st component with smaller mean.

	
fretbursts.fit.gaussian_fitting.two_gauss_mix_ab(x, p)

	Mixture of two Gaussians with no area constrain.

	
fretbursts.fit.gaussian_fitting.two_gauss_mix_pdf(x, p)

	PDF for the distribution of a mixture of two Gaussians.

	
fretbursts.fit.gaussian_fitting.two_gaussian2d_fit(sx, sy, guess=[0.5, 1])

	2D-Gaussian fit of samples S using a fit to the empirical CDF.

	
fretbursts.fit.gaussian_fitting.two_gaussian_fit_EM(s, p0=[0, 0.1, 0.6, 0.1, 0.5], max_iter=300, ptol=0.0001, fix_mu=[0, 0], fix_sig=[0, 0], debug=False, weights=None)

	Fit the sample s with two gaussians using Expectation Maximization.

This vesion allows to optionally fix mean or std. dev. of each component.

	Parameters

	
	s (array) – population of samples to be fitted

	p0 (sequence-like) – initial parameters [mu0, sig0, mu1, sig1, a]

	bound (tuple of pairs) – sequence of (min, max) values that constrain
the parameters. If min or max are None, no boundary is set.

	ptol (float) – convergence condition. Relative max variation of any
parameter.

	max_iter (int) – max number of iteration in case of non convergence.

	weights (array) – optional weigths, same size as s (for ex.
1/sigma^2 ~ nt).

	Returns

	Array of parameters for the 2-gaussians (5 elements)

	
fretbursts.fit.gaussian_fitting.two_gaussian_fit_EM_b(s, p0=[0, 0.1, 0.6, 0.1, 0.5], weights=None, bounds=[(None, None), (None, None), (None, None), (None, None), (None, None)], max_iter=300, ptol=0.0001, debug=False)

	Fit the sample s with two gaussians using Expectation Maximization.

This version allows setting boundaries for each parameter.

	Parameters

	
	s (array) – population of samples to be fitted

	p0 (sequence-like) – initial parameters [mu0, sig0, mu1, sig1, a]

	bound (tuple of pairs) – sequence of (min, max) values that constrain
the parameters. If min or max are None, no boundary is set.

	ptol (float) – convergence condition. Relative max variation of any
parameter.

	max_iter (int) – max number of iteration in case of non convergence.

	weights (array) – optional weigths, same size as s (for ex.
1/sigma^2 ~ nt).

	Returns

	Array of parameters for the 2-gaussians (5 elements)

	
fretbursts.fit.gaussian_fitting.two_gaussian_fit_KDE_curve(s, p0=[0, 0.1, 0.6, 0.1, 0.5], weights=None, bandwidth=0.05, x_pdf=None, debug=False, method='SLSQP', bounds=None, verbose=False, **kde_kwargs)

	Fit sample s with two gaussians using a KDE pdf approximation.

The 2-gaussian pdf is then curve-fitted to the KDE pdf.

	Parameters

	
	s (array) – population of samples to be fitted

	p0 (sequence-like) – initial parameters [mu0, sig0, mu1, sig1, a]

	bandwidth (float) – bandwidth for the KDE algorithm

	method (string) – fit method, can be ‘leastsq’ or one of the methods
accepted by scipy minimize()

	bounds (None or 5-element list) – if not None, each element is a
(min,max) pair of bounds for the corresponding parameter. This
argument can be used only with L-BFGS-B, TNC or SLSQP methods.
If bounds are used, parameters cannot be fixed

	x_pdf (array) – array on which the KDE PDF is evaluated and curve-fitted

	weights (array) – optional weigths, same size as s (for ex.
1/sigma^2 ~ nt).

	debug (bool) – if True perfoms more tests and print more info.

Additional kwargs are passed to scipy.stats.gaussian_kde().

	Returns

	Array of parameters for the 2-gaussians (5 elements)

	
fretbursts.fit.gaussian_fitting.two_gaussian_fit_cdf(s, p0=[0.0, 0.05, 0.6, 0.1, 0.5], fix_mu=[0, 0], fix_sig=[0, 0])

	Fit the sample s with two gaussians using a CDF fit.

Curve fit 2-gauss mixture Cumulative Distribution Function (CDF) to the
empirical CDF for sample s.

Note that with a CDF fit no weighting is possible.

	Parameters

	
	s (array) – population of samples to be fitted

	p0 (5-element list or array) – initial guess or parameters

	fix_mu (tuple of bools) – Whether to fix the mean of the gaussians

	fix_sig (tuple of bools) – Whether to fix the sigma of the gaussians

	Returns

	Array of parameters for the 2-gaussians (5 elements)

	
fretbursts.fit.gaussian_fitting.two_gaussian_fit_curve(x, y, p0, return_all=False, verbose=False, **kwargs)

	Fit a 2-gaussian mixture to the (x,y) curve.
kwargs are passed to the leastsq() function.

If return_all=False then return only the fitted paramaters
If return_all=True then the full output of leastsq is returned.

	
fretbursts.fit.gaussian_fitting.two_gaussian_fit_hist(s, bins=array([-0.5 , -0.499, -0.498, ..., 1.497, 1.498, 1.499]), weights=None, p0=[0.2, 1, 0.8, 1, 0.3], fix_mu=[0, 0], fix_sig=[0, 0], fix_a=False)

	Fit the sample s with 2-gaussian mixture (histogram fit).

Uses scipy.optimize.leastsq function. Parameters can be fixed but
cannot be constrained in an interval.

	Parameters

	
	s (array) – population of samples to be fitted

	p0 (5-element list or array) – initial guess or parameters

	bins (int or array) – bins passed to np.histogram()

	weights (array) – optional weights passed to np.histogram()

	fix_a (tuple of bools) – Whether to fix the amplitude of the gaussians

	fix_mu (tuple of bools) – Whether to fix the mean of the gaussians

	fix_sig (tuple of bools) – Whether to fix the sigma of the gaussians

	Returns

	Array of parameters for the 2-gaussians (5 elements)

	
fretbursts.fit.gaussian_fitting.two_gaussian_fit_hist_min(s, bounds=None, method='L-BFGS-B', bins=array([-0.5 , -0.499, -0.498, ..., 1.497, 1.498, 1.499]), weights=None, p0=[0.2, 1, 0.8, 1, 0.3], fix_mu=[0, 0], fix_sig=[0, 0], fix_a=False, verbose=False)

	Fit the sample s with 2-gaussian mixture (histogram fit). [Bounded]

Uses scipy.optimize.minimize allowing constrained minimization.

	Parameters

	
	s (array) – population of samples to be fitted

	method (string) – one of the methods accepted by scipy minimize()

	bounds (None or 5-element list) – if not None, each element is a
(min,max) pair of bounds for the corresponding parameter. This
argument can be used only with L-BFGS-B, TNC or SLSQP methods.
If bounds are used, parameters cannot be fixed

	p0 (5-element list or array) – initial guess or parameters

	bins (int or array) – bins passed to np.histogram()

	weights (array) – optional weights passed to np.histogram()

	fix_a (tuple of bools) – Whether to fix the amplitude of the gaussians

	fix_mu (tuple of bools) – Whether to fix the mean of the gaussians

	fix_sig (tuple of bools) – Whether to fix the sigma of the gaussians

	verbose (boolean) – allows printing fit information

	Returns

	Array of parameters for the 2-gaussians (5 elements)

	
fretbursts.fit.gaussian_fitting.two_gaussian_fit_hist_min_ab(s, bounds=None, method='L-BFGS-B', bins=array([-0.5 , -0.499, -0.498, ..., 1.497, 1.498, 1.499]), weights=None, p0=[0.2, 1, 0.8, 1, 0.3], fix_mu=[0, 0], fix_sig=[0, 0], fix_a=[0, 0], verbose=False)

	Histogram fit of sample s with 2-gaussian functions.

Uses scipy.optimize.minimize allowing constrained minimization. Also
each parameter can be fixed.

The order of the parameters is: mu1, sigma1, a1, mu2, sigma2, a2.

	Parameters

	
	s (array) – population of samples to be fitted

	method (string) – one of the methods accepted by scipy minimize()

	bounds (None or 6-element list) – if not None, each element is a
(min,max) pair of bounds for the corresponding parameter. This
argument can be used only with L-BFGS-B, TNC or SLSQP methods.
If bounds are used, parameters cannot be fixed

	p0 (6-element list or array) – initial guess or parameters

	bins (int or array) – bins passed to np.histogram()

	weights (array) – optional weights passed to np.histogram()

	fix_a (tuple of bools) – Whether to fix the amplitude of the gaussians

	fix_mu (tuple of bools) – Whether to fix the mean of the gaussians

	fix_sig (tuple of bools) – Whether to fix the sigma of the gaussians

	verbose (boolean) – allows printing fit information

	Returns

	Array of parameters for the 2-gaussians (6 elements)

 Getting started

Getting started

	Getting started for the absolute python beginner
	Installing FRETBursts

	Running FRETBursts tutorial notebook

	FRETBursts Installation
	Installing latest stable version

	Alternative methods: using PIP

	Install latest development version

	Install FRETBursts in a separate environment

	Running FRETBursts
	Why a notebook-based workflow

	FRETBursts Dependencies

 FRETBursts Installation

FRETBursts Installation

FRETBursts can be installed as a standard python package either via conda
or PIP (see below). Being written in python, FRETBursts runs on OS X,
Windows and Linux.

For updates on the latest FRETBursts version please refer to the
Release Notes (What’s new?).

Installing latest stable version

The preferred way to to install and keep FRETBursts updated is through
conda, a package manager used by Anaconda scientific python distribution.
If you haven’t done it already, please install the python3 version of
Continuum Anaconda distribution [https://www.continuum.io/downloads]
(legacy python2 works too but is less updated).
Then, you can install or upgrade FRETBursts with:

conda install fretbursts -c conda-forge

After the installation, it is recommended that you download and run the
FRETBursts notebooks [https://github.com/OpenSMFS/FRETBursts_notebooks/archive/master.zip]
to get familiar with the workflow. If you don’t know what a Jupyter Notebooks is
and how to launch it please see:

	Jupyter/IPython Notebook Quick Start Guide [http://jupyter-notebook-beginner-guide.readthedocs.org/en/latest/]

See also the FRETBursts documentation section: Running FRETBursts.

Alternative methods: using PIP

Users that prefer using PIP [https://pypi.python.org/pypi/pip], have to
make sure that all the non-pure python dependencies are properly installed
(i.e. numpy, scipy, pandas, matplotlib, pyqt, pytables), then use the
usual:

pip install fretbursts --upgrade

The previous command installs or upgrades FRETBursts to the latest stable release.

Install latest development version

As a rule, all new development takes place on separate “feature branches”.
The master branch should always be stable and releasable.
The advantage of installing from the master branch is that you can
get updates without waiting for a formal release.
If there are some errors you can always roll back to the latest
released version to get your job done. Since you have the full version
down to the commit level printed in the notebook you will know which version
works and which does not.

You can install the latest development version directly from GitHub with:

pip install git+git://github.com/tritemio/FRETBursts.git

Note

Note that the previous command fails if git [http://git-scm.com/]
is not installed.

Alternatively you can do an “editable” installation, i.e. executing
FRETBursts from the source folder. In this case, modifications in the source
files are immediately available on the next FRETBursts import.
To do so, clone FRETBursts and install it as follows:

git clone https://github.com/OpenSMFS/FRETBursts.git
cd FRETBursts
pip install -e .

It is recommended that you install cython [http://cython.org/] before
FRETBursts so that the optimized C routines are installed as well.
Also, make sure you have lmfit and seaborn installed before running
FRETBursts.

Install FRETBursts in a separate environment

If you want to install multiple versions of FRETBursts, you can create separate
environments with conda [https://conda.io/docs/using/envs.html].
Each conda environments can contain
a totally different set of packages, so you can have an environment with the
latest released FRETBursts and one with the latest master version, for example.

FRETBursts is not in the default conda channel [https://docs.continuum.io/anaconda/pkg-docs],
but in the `conda-forge channel <https://conda-forge.github.io/ >`__.
You can add conda-forge to the channel list with:

conda config --append channels conda-forge

This appends conda-forge to the channel list, with a lower
priority than the default channel. It means that a package available,
with the same version, in both conda-forge and the default channel,
will be installed from default.

To make a new environment called fbmaster containing python 3.6 and
fretbursts:

conda create -n fbmaster python=3.6 fretbursts

The environment needs to be activated:

. activate fbmaster

(on windows remove the leading “dot”).

Once the environment is activated you can install/remove more packages in it.
For example you can replace the stable FRETBursts with the version from github master using
pip install -e . in the same terminal where the environment has been activated.
Installing the stable FRETBursts first allows installing all the dependencies through conda.
Conda adds the environment to the notebook menu. So when you open a notebook, you can go to the
menu Kernel -> Change kernel and select fbmaster instead of default (or vice versa).
The latest used kernel is saved in the notebook so you don’t have to switch every time.

Environments help to be more reproducible in computations. They can be “saved”
or exported to a text file for recreation on a different machine. For example,
you can have the analysis for an old paper that fails to run or gives different
results on an updated python installation. If you saved the environment file,
you can restore the old environment with the exact version of all packages.
It saves you time, trouble and makes the analysis more reproducible.

Refer to the conda documentation
Managing environments [https://conda.io/docs/using/envs.html] for details.

 Loader functions

Loader functions

While FRETBursts can load data files from different file formats, we
advocate using Photon-HDF5 [http://photon-hdf5.org/],
a file format specifically designed for freely-diffusing single-molecule
spectroscopy data.

Photon-HDF5 files can be loaded with the function photon_hdf5(),
regardless of the type of excitation or number of spots.

Single-spot μs-ALEX measurement stored in SM files can be loaded via
the function usalex() and single-spot ns-ALEX measurement stored in SPC files
(Beckr & Hickl) can be loaded via the function nsalex().
To load data from arbitrary format see Load data manually.

Note that regardless of the format, for alternated excitation data,
after loading the data you need to apply the alternation parameters using
alex_apply_period(). After the parameters are applied you can
proceed to background estimation and burst search.

Contents

	Loader functions

	List of loader functions

	Load data manually

List of loader functions

The loader module contains functions to load each supported data format.
The loader functions load data from a specific format and
return a new fretbursts.burstlib.Data() object containing the data.

This module contains the high-level function to load a data-file and
to return a Data() object. The low-level functions that perform the binary
loading and preprocessing can be found in the dataload folder.

	
fretbursts.loader.alex_apply_period(d, delete_ph_t=True)

	Apply the ALEX period definition set in D_ON and A_ON attributes.

This function works both for us-ALEX and ns-ALEX data.

Note that you first need to load the data in a variable d and then
set the alternation parameters using d.add(D_ON=..., A_ON=...).

The typical pattern for loading ALEX data is the following:

d = loader.photon_hdf5(fname=fname)
d.add(D_ON=(2850, 580), A_ON=(900, 2580))
alex_plot_alternation(d)

If the plot looks good, apply the alternation with:

loader.alex_apply_period(d)

Now d is ready for futher processing such as background estimation,
burst search, etc…

	
fretbursts.loader.nsalex(fname)

	Load nsALEX data from a SPC file and return a Data() object.

This function returns a Data() object to which you need to apply
an alternation selection before performing further analysis (background
estimation, burst search, etc.).

The pattern to load nsALEX data is the following:

d = loader.nsalex(fname=fname)
d.add(D_ON=(2850, 580), A_ON=(900, 2580))
alex_plot_alternation(d)

If the plot looks good apply the alternation with:

loader.alex_apply_period(d)

Now d is ready for futher processing such as background estimation,
burst search, etc…

	
fretbursts.loader.nsalex_apply_period(d, delete_ph_t=True)

	Applies to the Data object d the alternation period previously set.

Note that you first need to load the data in a variable d and then
set the alternation parameters using d.add(D_ON=..., A_ON=...).

The typical pattern for loading ALEX data is the following:

d = loader.photon_hdf5(fname=fname)
d.add(D_ON=(2850, 580), A_ON=(900, 2580))
alex_plot_alternation(d)

If the plot looks good, apply the alternation with:

loader.alex_apply_period(d)

Now d is ready for futher processing such as background estimation,
burst search, etc…

See also: alex_apply_period().

	
fretbursts.loader.photon_hdf5(filename, ondisk=False, strict=False)

	Load a data file saved in Photon-HDF5 format version 0.3 or higher.

Photon-HDF5 is a format for a wide range of timestamp-based
single molecule data. For more info please see:

http://photon-hdf5.org/

	Parameters

	
	filename (str or pathlib.Path) – path of the data file to be loaded.

	ondisk (bool) – if True, do not load the timestamps in memory
using instead references to the HDF5 arrays. Default False.

	Returns

	fretbursts.burstlib.Data object containing the data.

	
fretbursts.loader.usalex(fname, leakage=0, gamma=1.0, header=None, BT=None)

	Load usALEX data from a SM file and return a Data() object.

This function returns a Data() object to which you need to apply
an alternation selection before performing further analysis (background
estimation, burst search, etc.).

The pattern to load usALEX data is the following:

d = loader.usalex(fname=fname)
d.add(D_ON=(2850, 580), A_ON=(900, 2580), alex_period=4000)
plot_alternation_hist(d)

If the plot looks good, apply the alternation with:

loader.alex_apply_period(d)

Now d is ready for futher processing such as background estimation,
burst search, etc…

	
fretbursts.loader.usalex_apply_period(d, delete_ph_t=True, remove_d_em_a_ex=False)

	Applies to the Data object d the alternation period previously set.

Note that you first need to load the data in a variable d and then
set the alternation parameters using d.add(D_ON=..., A_ON=...).

The typical pattern for loading ALEX data is the following:

d = loader.photon_hdf5(fname=fname)
d.add(D_ON=(2850, 580), A_ON=(900, 2580))
alex_plot_alternation(d)

If the plot looks good, apply the alternation with:

loader.alex_apply_period(d)

Now d is ready for futher processing such as background estimation,
burst search, etc…

See also: alex_apply_period().

Load data manually

In case the data is available in a format not directly supported by
FRETBursts it is possible to manually create a fretbursts.burstslib.Data object.
For example, for non-ALEX smFRET data, two arrays of same length are
needed: the timestamps and the acceptor-mask. The timestamps need to be
an int64 numpy array containing the recorded photon timestamps in arbitrary
units (usually dictated by the acquisition hardware clock period).
The acceptor-mask needs to be a numpy boolean array that is True
when the corresponding timestamps comes from the acceptor channel and
False when it comes from the donor channel. Having these arrays a
Data object can be manually created with:

d = Data(ph_times_m=[timestamps], A_em=[acceptor_mask],
 clk_p=10e-9, ALEX=False, nch=1, fname='file_name')

In the previous example, we set the timestamp unit (clk_p) to 10~ns
and we specify that the data is not from an ALEX measurement. Creating
Data objects for ALEX and ns-ALEX measurements follows the same lines.

 MultiFitter reference documentation

MultiFitter reference documentation

This model provides a class for fitting multi-channel data
(MultiFitter) and a series of predefined functions for common
models used to fit E or S histograms.

Contents

	MultiFitter reference documentation

	The MultiFitter class

	Model factory functions

	Utility functions

The MultiFitter class

	
class fretbursts.mfit.MultiFitter(data_list, skip_ch=None)

	A class handling a list of 1-D datasets for histogramming, KDE, fitting.

This class takes a list of 1-D arrays of samples (such as E values
per burst). The list contains one 1-D array for each channel in
a multispot experiment. In single-spot experiments the list contains only
one array of samples.
For each dataset in the list, this class compute histograms, KDEs and
fits (both histogram fit and KDE maximum). The list of datasets is
stored in the attribute data_list.
The histograms can be fitted with an arbitrary model (lmfit.Model).
From KDEs the peak position in a range can be estimated.

Optionally weights can be assigned to each element in a dataset.
To assign weights a user can assign the .weights attribute with a list
of arrays; corresponding arrays in .weights and .data_list must have
the same size.

Alternatively a function returning the weights can be used. In this case,
the method .set_weights_func allows to set the function to be called
to generate weights.

	
calc_kde(bandwidth=0.03)

	Compute the list of kde functions and save it in .kde.

	
find_kde_max(x_kde, xmin=None, xmax=None)

	Finds the peak position of kde functions between xmin and xmax.

Results are saved in the list .kde_max_pos.

	
fit_histogram(model=None, pdf=True, **fit_kwargs)

	Fit the histogram of each channel using the same lmfit model.

A list of lmfit.Minimizer is stored in .fit_res.
The fitted values for all the parameters and all the channels are
save in a Pandas DataFrame .params.

	Parameters

	
	model (lmfit.Model object) – lmfit Model with all the parameters
already initialized used for fitting.

	pdf (bool) – if True fit the normalized histogram (.hist_pdf)
otherwise fit the raw counts (.hist_counts).

	fit_kwargs (dict) – keyword arguments passed to model().fit.

	
histogram(binwidth=0.03, bins=None, verbose=False, **kwargs)

	Compute the histogram of the data for each channel.

If bins is None, binwidth determines the bins array (saved in
self.hist_bins). If bins is not None, binwidth is ignored and
self.hist_binwidth is computed from self.hist_bins.

The kwargs and bins are passed to numpy.histogram.

	
set_weights_func(weight_func, weight_kwargs=None)

	Setup of the function returning the weights for each data-set.

To compute the weights for each dataset the weight_func is called
multiple times. Keys in weight_kwargs are arguments of
weight_func. Values in weight_kwargs are either scalars, in which
case they are passed to weight_func, or lists. When an argument
is a list, only one element of the list is passed each time.

	Parameters

	
	weight_func (function) – function that returns the weights

	weight_kwargs (dict) – keyword arguments to be passed to
weight_func.

Model factory functions

In this section you find the documentation for the factory-functions
that return pre-initialized models for fitting E and S data.

	
fretbursts.mfit.factory_gaussian(center=0.1, sigma=0.1, amplitude=1)

	Return an lmfit Gaussian model that can be used to fit data.

Arguments are initial values for the model parameters.

	Returns

	An lmfit.Model object with all the parameters already initialized.

	
fretbursts.mfit.factory_asym_gaussian(center=0.1, sigma1=0.1, sigma2=0.1, amplitude=1)

	Return a lmfit Asymmetric Gaussian model that can be used to fit data.

For the definition of asymmetric Gaussian see asym_gaussian().
Arguments are initial values for the model parameters.

	Returns

	An lmfit.Model object with all the parameters already initialized.

	
fretbursts.mfit.factory_two_gaussians(add_bridge=False, p1_center=0.1, p2_center=0.9, p1_sigma=0.03, p2_sigma=0.03)

	Return a 2-Gaussian + (optional) bridge model that can fit data.

The optional “bridge” component (i.e. a plateau between the two peaks)
is a function that is non-zero only between p1_center and p2_center
and is defined as:

br_amplitude * (1 - g(x, p1_center, p1_sigma) - g(x, p1_center, p2_sigma))

where g is a gaussian function with amplitude = 1 and br_amplitude
is the height of the plateau and the only additional parameter introduced
by the bridge. Note that both centers and sigmas parameters in the bridge
are the same ones of the adjacent Gaussian peaks. Therefore a
2-Gaussian + bridge model has 7 free parameters: 3 for each Gaussian and
an additional one for the bridge.
The bridge function is implemented in bridge_function().

	Parameters

	
	p1_center, p2_center (float) – initial values for the centers of the
two Gaussian components.

	p1_sigma, p2_sigma (float) – initial values for the sigmas of the
two Gaussian components.

	add_bridge (bool) – if True adds a bridge function between the two
gaussian peaks. If False the model has only two Gaussians.

	Returns

	An lmfit.Model object with all the parameters already initialized.

	
fretbursts.mfit.factory_two_asym_gaussians(add_bridge=False, p1_center=0.1, p2_center=0.9, p1_sigma=0.03, p2_sigma=0.03)

	Return a 2-Asym-Gaussians + (optional) bridge model that can fit data.

The Asym-Gaussian function is asym_gaussian().

	Parameters

	add_bridge (bool) – if True adds a bridge function between the two
gaussian peaks. If False the model has only two Asym-Gaussians.

The other arguments are initial values for the model parameters.

	Returns

	An lmfit.Model object with all the parameters already initialized.

	
fretbursts.mfit.factory_three_gaussians(p1_center=0.0, p2_center=0.5, p3_center=1, sigma=0.05)

	Return a 3-Gaussian model that can fit data.

The other arguments are initial values for the center for each
Gaussian component plus an single sigma argument that is used
as initial sigma for all the Gaussians. Note that during the fitting
the sigma of each Gaussian is varied independently.

	Returns

	An lmfit.Model object with all the parameters already initialized.

Utility functions

The following functions are utility functions used to build the
the model functions (i.e. the “factory functions”) for the fitting.

	
fretbursts.mfit.bridge_function(x, center1, center2, sigma1, sigma2, amplitude)

	A “bridge” function, complementary of two gaussian peaks.

Let g be a Gaussian function (with amplitude = 1), the bridge function
is defined as:

amplitude * (1 - g(x, center1, sigma1) - g(x, center2, sigma2))

for center1 < x < center2. The function is 0 otherwise.

	Parameters

	
	x (array) – 1-D array for the independent variable

	center1 (float) – center of the first gaussian (left side)

	center2 (float) – center of the second gaussian (right side)

	sigma1 (float) – sigma of the left-side gaussian

	sigma2 (float) – sigma of the right-side gaussian

	amplitude (float) – maximum (asymptotic) value of the bridge (plateau)

	Returns

	An array (same shape as x) with the function values.

	
fretbursts.mfit.asym_gaussian(x, center, sigma1, sigma2, amplitude)

	A asymmetric gaussian function composed by two gaussian halves.

This function is composed from two gaussians joined at their peak, so that
the left and right side decay with different sigmas.

	Parameters

	
	x (array) – 1-D array for the independent variable

	center (float) – function peak position

	sigma1 (float) – sigma of the left-side gaussian (for x < center)

	sigma2 (float) – sigma of the right-side gaussian (for x > center)

	amplitude (float) – maximum value reach for x = center.

	Returns

	An array (same shape as x) with the function values.

 Running FRETBursts

Running FRETBursts

After installation, FRETBursts can be imported with:

from fretbursts import *

that will also import numpy (as np) and matplolib.pyplot (as plt).
This is the syntax used throughout the tutorials.

Alternatively, you can import FRETBursts in its own namespace
(which is cleaner):

import fretbursts as fb

To get started with FRETBursts it is recommended that you download the
FRETBursts notebooks [https://github.com/OpenSMFS/FRETBursts_notebooks/archive/master.zip]
that contains live tutorials ready to run and modify.

Why a notebook-based workflow

Jupyter Notebooks [http://jupyter.org/] is the recommended
environment to perform interactive analysis with FRETBursts.

The FRETBursts tutorials [https://github.com/OpenSMFS/FRETBursts_notebooks]
are Jupyter notebooks and, typically,
a new analysis is performed by copying and modifying an existing notebook.

The FRETBursts notebooks display and store the exact FRETBursts version
(including the revision) used in the execution. Saving the software revision
together with analysis commands and results allows long term reproducibility
and provides a lightweight approach for regression testing.

For more information on installing and first steps with Jupyter Notebook
see:

	Jupyter/IPython Notebook Quick Start Guide [https://jupyter-notebook-beginner-guide.readthedocs.org]

 Photon selections

Photon selections

In this module we define the class Ph_sel used to specify a
“selection” of a sub-set of photons/timestamps (i.e. all-photons,
Donor-excitation-period photons, etc…).

A photon selection is one of the base photon streams or a combination of
them. Base photon streams are photon from the donor (or acceptor) emission
channel detected during the donor (or acceptor) excitation period. For
non-ALEX data there is only the donor excitation period.

The following table shows base photon streams for smFRET data (non-ALEX):

	Photon selection

	Syntax

	D-emission

	Ph_sel(Dex='Dem')

	A-emission

	Ph_sel(Dex='Aem')

and for ALEX data:

	Photon selection

	Syntax

	D-emission during D-excitation

	Ph_sel(Dex='Dem')

	A-emission during D-excitation

	Ph_sel(Dex='Aem')

	D-emission during A-excitation

	Ph_sel(Aex='Dem')

	A-emission during A-excitation

	Ph_sel(Aex='Aem')

Additionally, all the photons can be selected with Ph_sel('all') (that is a
shortcut for Ph_sel(Dex='DAem', Aex='DAem').

Examples

	Ph_sel(Dex='DAem', Aex='DAem') or Ph_sel('all') select all photons.

	Ph_sel(Dex='DAem') selects only donor and acceptor photons
emitted during donor excitation. These are all the photons for
non-ALEX data.

	Ph_sel(Dex='Aem', Aex='Aem') selects all the photons detected from
the acceptor-emission channel.

The documentation for the Ph_sel class follows.

	
class fretbursts.ph_sel.Ph_sel

	Class that describes a selection of photons.

This class takes two arguments Dex and Aex.
Valid values for the arguments are the strings ‘DAem’, ‘Dem’, ‘Aem’ or
None. These values select, respectively, donor+acceptor, donor-only,
acceptor-only or no photons during an excitation period (Dex or Aex).

The class must be called with at least one keyword argument or using
the string ‘all’ as the only argument. Calling Ph_sel('all') is
equivalent to Ph_sel(Dex='DAem', Aex='DAem').
Not specifying a keyword argument is equivalent to setting it to None.

 Photon rates functions

Photon rates functions

This module provides functions to compute photon rates from timestamps
arrays. Different methods to compute rates are implemented:

	Consecutive set of m timestamps (“sliding m-tuple”)

	KDE-based methods with Gaussian or Laplace distribution or rectangular
kernels.

Note

When using of “sliding m-tuple” method (1), rates can be only
computed for each consecutive set of m timestamps. The time-axis can be
computed from the mean timestamp in each m-tuple.

When using the KDE method, rates can be computed at any time point.
Practically, the time points at which rates are computed are timestamps
(in a photon stream). In other words, we don’t normally use a uniformly
sampled time axis but we use a timestamps array as time axis for the rate.

Note that computing rates with a fixed sliding time window and sampling
the function by centering the window on each timestamp is equivalent to
a KDE-based rate computation using a rectangular kernel.

	
fretbursts.phtools.phrates.kde_gaussian(timestamps, tau, time_axis=None)

	Computes Gaussian KDE for timestamps evaluated at time_axis.

Computes KDE rates of timestamps using a Gaussian kernel:

kernel = exp(-(t - t0)^2 / (2 * tau^2)))

The rate is computed for each time point in time_axis.
When time_axis is None, then timestamps is used as time axis.

	Parameters

	
	timestamps (array) – arrays of photon timestamps

	tau (float) – sigma of the Gaussian kernel

	time_axis (array or None) – array of time points where the rate is
computed. If None, uses timestamps as time axis.

	Returns

	rates (array) – non-normalized rates (just the sum of the
Gaussian kernels). To obtain rates in Hz divide the
array by 2.5*tau.

	
fretbursts.phtools.phrates.kde_laplace(timestamps, tau, time_axis=None)

	Computes exponential KDE for timestamps evaluated at time_axis.

Computes KDE rates of timestamps using a laplace distribution kernel
(i.e. symmetric-exponential):

kernel = exp(-|t - t0| / tau)

The rate is computed for each time point in time_axis.
When time_axis is None, then timestamps is used as time axis.

	Parameters

	
	timestamps (array) – arrays of photon timestamps

	tau (float) – time constant of the exponential kernel

	time_axis (array or None) – array of time points where the rate is
computed. If None, uses timestamps as time axis.

	Returns

	rates (array) – non-normalized rates (just the sum of the
exponential kernels). To obtain rates in Hz divide the
array by 2*tau (or other conventional x*tau duration).

	
fretbursts.phtools.phrates.kde_rect(timestamps, tau, time_axis=None)

	Computes KDE with rect kernel for timestamps evaluated at time_axis.

Computes KDE rates of timestamps using a rectangular kernel which is
1 in the range [-tau/2, tau/2] and 0 otherwise.

The rate is computed for each time point in time_axis.
When time_axis is None, then timestamps is used as time axis.

	Parameters

	
	timestamps (array) – arrays of photon timestamps

	tau (float) – duration of the rectangular kernel

	time_axis (array or None) – array of time points where the rate is
computed. If None, uses timestamps as time axis.

	Returns

	rates (array) – non-normalized rates (just the sum of the
rectangular kernels). To obtain rates in Hz divide the
array by tau.

	
fretbursts.phtools.phrates.mtuple_delays(ph, m)

	Compute array of m-photons delays of size ph.size - m + 1.

The m-photons delay is defined as the difference between the last and
first timestamp in each set of m consecutive timestamps.
The m-photons delay expression is:

t[i + m - 1] - t[i]

for each i in [0 .. ph.size - m].

	Parameters

	
	ph (array) – photon timestamps array

	m (int) – number of timestamps to use

	Returns

	Array of m-photons delays, with size equal to ph.size - m + 1.

	
fretbursts.phtools.phrates.mtuple_delays_min(ph, m)

	Compute the min m-photons delay in ph.

	
fretbursts.phtools.phrates.mtuple_rates(ph, m, c=1)

	Compute the instantaneous rates for timestamps in ph using m photons.

Compute the rates for all the consecutive sets of m photons. Noting that
the number of inter-photon delays is n = m - 1, the rate is
computed with the expression:

(n - c) / (t[last] - t[first])

where “last” and “first” refer to the last and first timestamp in each
group of m consecutive timestamps.

By changing c we obtain estimators with different properties.
When c=1 (default), the result is the unbiased estimator of the rate.
When c=1/3 we obtain the estimator whose median is equal to the the rate.
Empirically, the minimal RMS error is committed with c=2.
All the previous considerations are valid under the assumption that we
are estimating the rate of events generated by a stationary Poisson
process.

	Parameters

	
	ph (array) – photon timestamps array

	m (int) – number of timestamps to use for computing the rate

	c (float) – correction factor for the rate estimation.

	Returns

	Array of rates, with size equal to ph.size - m + 1.

	
fretbursts.phtools.phrates.mtuple_rates_max(ph, m, c=1)

	Compute max m-photon rate in ph.

	
fretbursts.phtools.phrates.mtuple_rates_t(ph, m)

	Compute mean time for each rate computed by mtuple_rates.

 Plotting Data

Plotting Data

Contents

	Plotting Data

	Timetrace and ratetrace plots

	1D Histograms

	Bursts: ratiometric quantities

	Bursts: tail distributions

	Others

	ALEX plots

	Scatter plots

This module defines all the plotting functions for the
fretbursts.burstlib.Data object.

The main plot function is dplot() that takes, as parameters, a Data()
object and a 1-ch-plot-function and creates a subplot for each channel.

The 1-ch plot functions are usually called through dplot but can also be
called directly to make a single channel plot.

The 1-ch plot functions names all start with the plot type (timetrace,
ratetrace, hist or scatter).

Example 1 - Plot the timetrace for all ch:

dplot(d, timetrace, scroll=True)

Example 2 - Plot a FRET histogramm for each ch with a fit overlay:

dplot(d, hist_fret, show_model=True)

For more examples refer to
FRETBurst notebooks [http://nbviewer.ipython.org/github/tritemio/FRETBursts_notebooks/tree/master/notebooks/].

Timetrace and ratetrace plots

	
fretbursts.burst_plot.timetrace(d, i=0, binwidth=0.001, bins=None, tmin=0, tmax=200, bursts=False, burst_picker=True, scroll=False, show_rate_th=True, F=None, rate_th_style={'label': None}, show_aa=True, legend=False, set_ax_limits=True, burst_color='#BBBBBB', plot_style=None)

	Plot the timetraces (histogram) of photon timestamps.

	Parameters

	
	d (Data object) – the measurement’s data to plot.

	i (int) – the channel to plot. Default 0.

	binwidth (float) – the bin width (seconds) of the timetrace histogram.

	bins (array or None) – If not None, defines the bin edges for the
timetrace (overriding binwidth). If None, binwidth is use
to generate uniform bins.

	tmin, tmax (float) – min and max time (seconds) to include in the
timetrace. Note that a long time range and a small binwidth
can require a significant amount of memory.

	bursts (bool) – if True, plot the burst start-stop times.

	burst_picker (bool) – if True, enable the ability to click on bursts
to obtain burst info. This function requires the matplotlib’s QT
backend.

	scroll (bool) – if True, activate a scrolling bar to quickly scroll
through the timetrace. This function requires the matplotlib’s QT
backend.

	show_rate_th (bool) – if True, plot the burst search threshold rate.

	F (bool) – if show_rate is True, show a rate F times larger
than the background rate.

	rate_th_style (dict) – matplotlib style for the rate line.

	show_aa (bool) – if True, plot a timetrace for the AexAem photons.
If False (default), plot timetraces only for DexDem and DexAem
streams.

	legend (bool) – whether to show the legend or not.

	set_ax_limits (bool) – if True, set the xlim to zoom on a small portion
of timetrace. If False, do not set the xlim, display the full
timetrace.

	burst_color (string) – string containing the the HEX RGB color to use
to highlight the burst regions.

	plot_style (dict) – matplotlib’s style for the timetrace lines.

	
fretbursts.burst_plot.timetrace_single(d, i=0, binwidth=0.001, bins=None, tmin=0, tmax=200, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), invert=False, bursts=False, burst_picker=True, scroll=False, cache_bins=True, plot_style=None, show_rate_th=True, F=None, rate_th_style={}, set_ax_limits=True, burst_color='#BBBBBB')

	Plot the timetrace (histogram) of timestamps for a photon selection.

See timetrace() to plot multiple photon selections (i.e.
Donor and Acceptor photons) in one step.

	
fretbursts.burst_plot.ratetrace(d, i=0, m=None, max_num_ph=1000000.0, tmin=0, tmax=200, bursts=False, burst_picker=True, scroll=False, show_rate_th=True, F=None, rate_th_style={'label': None}, show_aa=True, legend=False, set_ax_limits=True, burst_color='#BBBBBB')

	Plot the rate timetraces of photon timestamps.

	Parameters

	
	d (Data object) – the measurement’s data to plot.

	i (int) – the channel to plot. Default 0.

	max_num_ph (int) – Clip the rate timetrace after the
max number of photons max_num_ph is reached.

	tmin, tmax (float) – min and max time (seconds) to include in the
timetrace. Note that a long time range and a small binwidth
can require a significant amount of memory.

	bursts (bool) – if True, plot the burst start-stop times.

	burst_picker (bool) – if True, enable the ability to click on bursts
to obtain burst info. This function requires the matplotlib’s QT
backend.

	scroll (bool) – if True, activate a scrolling bar to quickly scroll
through the timetrace. This function requires the matplotlib’s QT
backend.

	show_rate_th (bool) – if True, plot the burst search threshold rate.

	F (bool) – if show_rate is True, show a rate F times larger
than the background rate.

	rate_th_style (dict) – matplotlib style for the rate line.

	show_aa (bool) – if True, plot a timetrace for the AexAem photons.
If False (default), plot timetraces only for DexDem and DexAem
streams.

	legend (bool) – whether to show the legend or not.

	set_ax_limits (bool) – if True, set the xlim to zoom on a small portion
of timetrace. If False, do not set the xlim, display the full
timetrace.

	burst_color (string) – string containing the the HEX RGB color to use
to highlight the burst regions.

	
fretbursts.burst_plot.ratetrace_single(d, i=0, m=None, max_num_ph=1000000.0, tmin=0, tmax=200, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), invert=False, bursts=False, burst_picker=True, scroll=False, plot_style={}, show_rate_th=True, F=None, rate_th_style={}, set_ax_limits=True, burst_color='#BBBBBB')

	Plot the ratetrace of timestamps for a photon selection.

See ratetrace() to plot multiple photon selections (i.e.
Donor and Acceptor photons) in one step.

	
fretbursts.burst_plot.timetrace_bg(d, i=0, nolegend=False, ncol=2, plot_style={}, show_da=False)

	Timetrace of background rates.

	
fretbursts.burst_plot.timetrace_b_rate(d, i=0)

	Timetrace of bursts-per-second in each period.

1D Histograms

Bursts: ratiometric quantities

	
fretbursts.burst_plot.hist_fret(d, i=0, ax=None, binwidth=0.03, bins=None, pdf=True, hist_style='bar', weights=None, gamma=1.0, add_naa=False, show_fit_stats=False, show_fit_value=False, fit_from='kde', show_kde=False, bandwidth=0.03, show_kde_peak=False, show_model=False, show_model_peaks=True, hist_bar_style=None, hist_plot_style=None, model_plot_style=None, kde_plot_style=None, verbose=False)

	Plot FRET histogram and KDE.

The most used argument is binwidth that sets the histogram bin width.

For detailed documentation see hist_burst_data().

	
fretbursts.burst_plot.hist_S(d, i=0, ax=None, binwidth=0.03, bins=None, pdf=True, hist_style='bar', weights=None, gamma=1.0, add_naa=False, show_fit_stats=False, show_fit_value=False, fit_from='kde', show_kde=False, bandwidth=0.03, show_kde_peak=False, show_model=False, show_model_peaks=True, hist_bar_style=None, hist_plot_style=None, model_plot_style=None, kde_plot_style=None, verbose=False)

	Plot S histogram and KDE.

The most used argument is binwidth that sets the histogram bin width.

For detailed documentation see hist_burst_data().

	
fretbursts.burst_plot.hist_burst_data(d, i=0, data_name='E', ax=None, binwidth=0.03, bins=None, vertical=False, pdf=False, hist_style='bar', weights=None, gamma=1.0, add_naa=False, show_fit_stats=False, show_fit_value=False, fit_from='kde', show_kde=False, bandwidth=0.03, show_kde_peak=False, show_model=False, show_model_peaks=True, hist_bar_style=None, hist_plot_style=None, model_plot_style=None, kde_plot_style=None, verbose=False)

	Plot burst_data (i.e. E, S, etc…) histogram and KDE.

This a generic function to plot histograms for any burst data.
In particular this function is called by hist_fret() and
hist_S() to make E and S histograms respectively.

Histograms and KDE can be plotted on any Data variable after
burst search. To show a model, a model must be fitted first by calling
d.E_fitter.fit_histogram(). To show the KDE peaks position, they
must be computed first with d.E_fitter.find_kde_max().

The arguments are shown below grouped in logical sections.

Generic arguments

	Parameters

	
	data_name (string) – name of the burst data (i.e. ‘E’ or ‘S’)

	ax (None or matplotlib axis) – optional axis instance to plot in.

	vertical (bool) – if True the x axis is oriented vertically.

	verbose (bool) – if False, suppress any printed output.

Histogram arguments: control the histogram appearance

	Parameters

	
	hist_style (string) – if ‘bar’ use a classical bar histogram,
otherwise do a normal line plot of bin counts vs bin centers

	bins (None or array) – if None the bins are computed according to
binwidth. If not None contains the arrays of bin edges
and overrides binwidth.

	binwidth (float) – bin width for the histogram.

	pdf (bool) – if True, normalize the histogram to obtain a PDF.

	hist_bar_style (dict) – style dict for the histogram when
hist_style == 'bar'.

	hist_plot_style (dict) – style dict for the histogram when
hist_style != 'bar'.

Model arguments: control the model plot

	Parameters

	
	show_model (bool) – if True shows the model fitted to the histogram

	model (lmfit.Model object or None) – lmfit Model used for histogram
fitting. If None the histogram is not fitted.

	show_model_peaks (bool) – if True marks the position of model peaks

	model_plot_style (dict) – style dict for the model plot

KDE arguments: control the KDE plot

	Parameters

	
	show_kde (bool) – if True shows the KDE curve

	show_kde_peak (bool) – if True marks the position of the KDE peak

	bandwidth (float or None) – bandwidth used to compute the KDE
If None the KDE is not computed.

	kde_plot_style (dict) – style dict for the KDE curve

Weights arguments (weights are used to weight bursts according to
their size, affecting histograms and KDEs).

	Parameters

	
	weights (string or None) – kind of burst-size weights.
See fretbursts.fret_fit.get_weights().

	gamma (float) – gamma factor passed to get_weights().

	add_naa (bool) – if True adds naa to the burst size.

Fit text arguments: control how to print annotation with
fit information.

	Parameters

	
	fit_from (string) – determines how to obtain the fit value. If ‘kde’
the fit value is the KDE peak. Otherwise it must be the name
of a model parameter that will be used as fit value.

	show_fit_value (bool) – if True annotate the plot with fit value.

	show_fit_stats (bool) – if True annotate the figure with mean fit
value and max deviation across the channels (for multi-spot).

Bursts: tail distributions

	
fretbursts.burst_plot.hist_size(d, i=0, which='all', bins=(0, 600, 4), pdf=False, weights=None, yscale='log', gamma=1, beta=1, donor_ref=True, add_naa=False, ph_sel=None, naa_aexonly=False, naa_comp=False, na_comp=False, vline=None, label_prefix=None, legend=True, color=None, plot_style=None)

	Plot histogram of “burst sizes”, according to different definitions.

	Parameters

	
	d (Data) – Data object

	i (int) – channel index

	bins (array or None) – array of bin edges. If len(bins) == 3
then is interpreted as (start, stop, step) values.

	which (string) – what photons to include in “size”. Valid values are
‘all’, ‘nd’, ‘na’, ‘naa’. When ‘all’, sizes are computed with
d.burst_sizes() (by default nd + na); ‘nd’, ‘na’, ‘naa’ get
counts from d.nd, d.na, d.naa (respectively Dex-Dem,
Dex-Aem, Aex-Aem).

	gamma, beta (floats) – factors used to compute the corrected burst
size. Ignored when which != ‘all’.
See fretbursts.burstlib.Data.burst_sizes_ich().

	add_naa (bool) – if True, include naa to the total burst size.

	donor_ref (bool) – convention used for corrected burst size computation.
See fretbursts.burstlib.Data.burst_sizes_ich() for details.

	na_comp (bool) – [PAX-only] If True, multiply the na term
by (1 + Wa/Wd), where Wa and Wd are the D and A alternation
durations (typically Wa/Wd = 1).

	naa_aexonly (bool) – [PAX-only] if True, the naa term is
corrected to include only A emission due to A excitation.
If False, the naa term includes all the counts in DAexAem.
The naa term also depends on the naa_comp argument.

	naa_comp (bool) – [PAX-only] If True, multiply the naa term by
(1 + Wa/Wd) where Wa and Wd are the D and A alternation
durations (typically Wa/Wd = 1). The naa term also depends on
the naa_aexonly argument.

	label_prefix (string or None) – a custom prefix for the legend label.

	color (string or tuple or None) – matplotlib color used for the plot.

	pdf (bool) – if True, normalize the histogram to obtain a PDF.

	yscale (string) – ‘log’ or ‘linear’, sets the plot y scale.

	legend (bool) – if True add legend to plot

	plot_style (dict) – dict of matplotlib line style passed to plot.

	vline (float) – If not None, plot vertical line at the specified x
position.

See also

	fretbursts.burstlib.Data.burst_sizes_ich().

	fretbursts.burstlib.Data.burst_sizes_pax_ich().

	
fretbursts.burst_plot.hist_size_all(d, i=0, **kwargs)

	Plot burst sizes for all the combinations of photons.

Calls hist_size() multiple times with different which parameters.

	
fretbursts.burst_plot.hist_width(d, i=0, bins=(0, 10, 0.025), pdf=True, weights=None, yscale='log', color=None, plot_style=None, vline=None)

	Plot histogram of burst durations.

	Parameters

	
	d (Data) – Data object

	i (int) – channel index

	bins (array or None) – array of bin edges. If len(bins) == 3
then is interpreted as (start, stop, step) values.

	pdf (bool) – if True, normalize the histogram to obtain a PDF.

	color (string or tuple or None) – matplotlib color used for the plot.

	yscale (string) – ‘log’ or ‘linear’, sets the plot y scale.

	plot_style (dict) – dict of matplotlib line style passed to plot.

	vline (float) – If not None, plot vertical line at the specified x
position.

	
fretbursts.burst_plot.hist_brightness(d, i=0, bins=(0, 60, 1), pdf=True, weights=None, yscale='log', gamma=1, add_naa=False, beta=1.0, donor_ref=True, add_aex=True, aex_corr=True, label_prefix=None, color=None, plot_style=None, vline=None)

	Plot histogram of burst brightness, i.e. burst size / duration.

	Parameters

	
	d (Data) – Data object

	i (int) – channel index

	bins (array or None) – array of bin edges. If len(bins) == 3
then is interpreted as (start, stop, step) values.

	gamma, beta (floats) – factors used to compute the corrected burst
size. See fretbursts.burstlib.Data.burst_sizes_ich().

	add_naa (bool) – if True, include naa to the total burst size.

	donor_ref (bool) – convention used for corrected burst size computation.
See fretbursts.burstlib.Data.burst_sizes_ich() for details.

	add_aex (bool) – PAX-only. Whether to add signal from Aex laser period
to the burst size. Default True.
See fretbursts.burstlib.Data.burst_sizes_pax_ich().

	aex_corr (bool) – PAX-only. If True, do duty-cycle correction
when adding the DAexAem term naa.
See fretbursts.burstlib.Data.burst_sizes_pax_ich().

	label_prefix (string or None) – a custom prefix for the legend label.

	color (string or tuple or None) – matplotlib color used for the plot.

	pdf (bool) – if True, normalize the histogram to obtain a PDF.

	yscale (string) – ‘log’ or ‘linear’, sets the plot y scale.

	plot_style (dict) – dict of matplotlib line style passed to plot.

	vline (float) – If not None, plot vertical line at the specified x
position.

	
fretbursts.burst_plot.hist_sbr(d, i=0, bins=(0, 30, 1), pdf=True, weights=None, color=None, plot_style=None)

	Histogram of per-burst Signal-to-Background Ratio (SBR).

	
fretbursts.burst_plot.hist_burst_phrate(d, i=0, bins=(0, 1000, 20), pdf=True, weights=None, color=None, plot_style=None, vline=None)

	Histogram of max photon rate in each burst.

Others

	
fretbursts.burst_plot.hist_interphoton_single(d, i=0, binwidth=0.0001, tmax=None, bins=None, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), period=None, yscale='log', xscale='linear', xunit='ms', plot_style=None)

	Plot histogram of interphoton delays for a single photon streams.

	Parameters

	
	d (Data object) – the input data.

	i (int) – the channel for which the plot must be done. Default is 0.
For single-spot data the only valid value is 0.

	binwidth (float) – histogram bin width in seconds.

	tmax (float or None) – max timestamp delay in the histogram (seconds).
If None (default), uses the the max timestamp delay in the stream.
If not None, the plotted histogram may be further trimmed to
the smallest delay with counts > 0 if this delay happens to be
smaller than tmax.

	bins (array or None) – specifies the bin edged (in seconds). When
bins is not None then the arguments binwidth and tmax
are ignored. When bins is None, the bin edges are computed
from the binwidth and tmax arguments.

	ph_sel (Ph_sel object) – photon stream for which plotting the histogram

	period (int) – the background period to use for plotting the histogram.
The background period is a time-slice of the measurement from which
timestamps are taken. If period is None (default) the
time-windows is the full measurement.

	yscale (string) – scale for the y-axis. Valid values include ‘log’ and
‘linear’. Default ‘log’.

	xscale (string) – scale for the x-axis. Valid values include ‘log’ and
‘linear’. Default ‘linear’.

	xunit (string) – unit used for the x-axis. Valid values are ‘s’, ‘ms’,
‘us’, ‘ns’. Default ‘ms’.

	plot_style (dict) – keyword arguments to be passed to matplotlib’s
plot function. Used to customize the plot style.

	
fretbursts.burst_plot.hist_interphoton(d, i=0, binwidth=0.0001, tmax=None, bins=None, period=None, yscale='log', xscale='linear', xunit='ms', plot_style=None, show_da=False, legend=True)

	Plot histogram of photon interval for different photon streams.

	Parameters

	
	d (Data object) – the input data.

	i (int) – the channel for which the plot must be done. Default is 0.
For single-spot data the only valid value is 0.

	binwidth (float) – histogram bin width in seconds.

	tmax (float or None) – max timestamp delay in the histogram (seconds).
If None (default), uses the the max timestamp delay in the stream.
If not None, the plotted histogram may be further trimmed to
the smallest delay with counts > 0 if this delay happens to be
smaller than tmax.

	bins (array or None) – specifies the bin edged (in seconds). When
bins is not None then the arguments binwidth and tmax
are ignored. When bins is None, the bin edges are computed
from the binwidth and tmax arguments.

	period (int) – the background period to use for plotting the histogram.
The background period is a time-slice of the measurement from which
timestamps are taken. If period is None (default) the
time-windows is the full measurement.

	yscale (string) – scale for the y-axis. Valid values include ‘log’ and
‘linear’. Default ‘log’.

	xscale (string) – scale for the x-axis. Valid values include ‘log’ and
‘linear’. Default ‘linear’.

	xunit (string) – unit used for the x-axis. Valid values are ‘s’, ‘ms’,
‘us’, ‘ns’. Default ‘ms’.

	plot_style (dict) – keyword arguments to be passed to matplotlib’s
plot function. Used to customize the plot style.

	show_da (bool) – If False (default) do not plot the AexDem photon stream.
Ignored when the measurement is not ALEX.

	legend (bool) – If True (default) plot a legend.

	
fretbursts.burst_plot.hist_bg_single(d, i=0, binwidth=0.0001, tmax=0.01, bins=None, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), period=0, yscale='log', xscale='linear', xunit='ms', plot_style=None, show_fit=True, fit_style=None, manual_rate=None)

	Plot histogram of photon interval for a single photon streams.

Optionally plots the fitted background as an exponential curve.
Most arguments are described in hist_interphoton_single().
In the following we document only the additional arguments.

	Parameters

	
	show_fit (bool) – If True shows the fitted background rate as an
exponential distribution.

	manual_rate (float or None) – When not None use this value as background
rate (ignoring the value saved in Data).

	fit_style (dict) – arguments passed to matplotlib’s plot for
for plotting the exponential curve.

For a description of all the other arguments see
hist_interphoton_single().

	
fretbursts.burst_plot.hist_bg(d, i=0, binwidth=0.0001, tmax=0.01, bins=None, period=0, yscale='log', xscale='linear', xunit='ms', plot_style=None, show_da=False, legend=True, show_fit=True, fit_style=None)

	Plot histogram of photon interval for different photon streams.

Optionally plots the fitted background.
Most arguments are described in hist_interphoton().
In the following we document only the additional arguments.

	Parameters

	
	show_fit (bool) – If True shows the fitted background rate as an
exponential distribution.

	fit_style (dict) – arguments passed to matplotlib’s plot for
for plotting the exponential curve.

For a description of all the other arguments see hist_interphoton().

	
fretbursts.burst_plot.hist_burst_delays(d, i=0, bins=(0, 10, 0.2), pdf=False, weights=None, color=None, plot_style=None)

	Histogram of waiting times between bursts.

	
fretbursts.burst_plot.hist_asymmetry(d, i=0, bin_max=2, binwidth=0.1, stat_func=<function median>)

	

ALEX plots

	
fretbursts.burst_plot.alex_jointplot(d, i=0, gridsize=50, cmap='Spectral_r', kind='hex', vmax_fret=True, vmin=1, vmax=None, joint_kws=None, marginal_kws=None, marginal_color=10, rightside_text=False, E_name='E', S_name='S')

	Plot an ALEX join plot: an E-S 2D histograms with marginal E and S.

This function plots a jointplot: an inner 2D E-S distribution plot
and the marginal distributions for E and S separately.
By default, the inner plot is an hexbin plot, i.e. the bin shape is
hexagonal. Hexagonal bins reduce artifacts due to discretization.
The marginal plots are histograms with a KDE overlay.

	Parameters

	
	d (Data object) – the variable containing the bursts to plot

	i (int) – the channel number. Default 0.

	gridsize (int) – the grid size for the 2D histogram (hexbin)

	C (1D array or None) – array of weights, it must have size equal to
the number of bursts in channel i (d.num_bursts[i]).
Passed to matplotlib hexbin().

	cmap (string) – name of the colormap for the 2D histogram. In
addition to matplotlib colormaps, FRETbursts defines
these custom colormaps: ‘alex_light’, ‘alex_dark’ and ‘alex_lv’.
Default ‘alex_light’.

	kind (string) – kind of plot for the 2-D distribution. Valid values:
‘hex’ for hexbin plots, ‘kde’ for kernel density estimation,
‘scatter’ for scatter plot.

	vmax_fret (bool) – if True, the colormap max value is equal to the
max bin counts in the FRET region (S < 0.8). If False the
colormap max is equal to the max bin counts.

	vmin (int) – min value in the histogram mapped by the colormap.
Default 0, the colormap lowest color represents bins with 0 counts.

	vmax (int or None) – max value in the histogram mapped by the colormap.
When None, vmax is computed automatically from the data and
dependes on the argument vmax_fret. Default None.

	joint_kws (dict) – keyword arguments passed to the function with plots
the inner 2-D distribution (i.e matplotlib scatter or hexbin or
seaborn kdeplot).
and hence to matplolib hexbin to customize the plot style.

	marginal_kws (dict) – keyword arguments passed to the function
hist_burst_data() used to plot the maginal distributions.

	marginal_color (int or color) – color to be used for the marginal
histograms. It can be an integer or any color accepted by
matplotlib. If integer, it represents a color in the colormap
cmap from 0 (lowest cmap color) to 99 (highest cmap color).

	rightside_text (bool) – when True, print the measurement name on
the right side of the figure. When False (default) no additional
text is printed.

	E_name, S_name (string) – name of the Data attribute to be used for
E and S. The default is ‘E’ and ‘S’ respectively. These arguments
are used when adding your own cutom E or S attributes to Data
using Data.add. In this case, you can specify the name of
these custom attributes so that they can be plotted as an E-S
histogram.

	Returns

	A seaborn.JointGrid object that can be used for tweaking the plot.

See also

The Seaborn documentation [https://seaborn.pydata.org/]
has more info on plot customization:

	https://seaborn.pydata.org/generated/seaborn.JointGrid.html

	
fretbursts.burst_plot.hist2d_alex(d, i=0, vmin=2, vmax=0, binwidth=0.05, S_max_norm=0.8, interp='bicubic', cmap='hot', under_color='white', over_color='white', scatter=True, scatter_ms=3, scatter_color='orange', scatter_alpha=0.2, gui_sel=False, cbar_ax=None, grid_color='#D0D0D0')

	Plot 2-D E-S ALEX histogram with a scatterplot overlay.

	
fretbursts.burst_plot.hexbin_alex(d, i=0, vmin=1, vmax=None, gridsize=80, cmap='Spectral_r', E_name='E', S_name='S', **hexbin_kwargs)

	Plot an hexbin 2D histogram for E-S.

	
fretbursts.burst_plot.plot_ES_selection(ax, E1, E2, S1, S2, rect=True, **kwargs)

	Plot an overlay ROI on top of an E-S plot (i.e. ALEX histogram).

This function plots a rectangle and inscribed ellipsis with x-axis limits
(E1, E2) and y-axis limits (S1, S2).

Note that, a dict with keys (E1, E2, S1, S2, rect) can be also passed to
fretbursts.select_bursts.ES() to apply a selection.

	Parameters

	
	ax (matplotlib axis) – the axis where the rectangle is plotted.
Typically you pass the axis of a previous E-S scatter plot
or histogram.

	E1, E2, S1, S2 (floats) – limits for E and S (X and Y axis respectively)
used to plot the rectangle.

	rect (bool) – if True, the rectangle is highlighted and the ellipsis is
grey. The color are swapped otherwise.

	**kwargs – other keywords passed to both matplotlib’s Rectangle
and Ellipse.

See also

For selecting bursts according to (E1, E2, S1, S2, rect) see:

	fretbursts.select_bursts.ES()

	
fretbursts.burst_plot.plot_alternation_hist(d, bins=None, ax=None, **kwargs)

	Plot the ALEX alternation histogram for the variable d.

This function works both for us-ALEX and ns-ALEX data.

This function must be called on ALEX data before calling
fretbursts.loader.alex_apply_period().

	
fretbursts.burst_plot.plot_alternation_hist_nsalex(d, bins=None, ax=None, ich=0, hist_style={}, span_style={})

	Plot the ns-ALEX alternation histogram for the variable d.

This function must be called on ns-ALEX data before calling
fretbursts.loader.alex_apply_period().

Scatter plots

	
fretbursts.burst_plot.scatter_width_size(d, i=0)

	Scatterplot of burst width versus size.

	
fretbursts.burst_plot.scatter_da(d, i=0, alpha=0.3)

	Scatterplot of donor vs acceptor photons (nd, vs na) in each burst.

	
fretbursts.burst_plot.scatter_rate_da(d, i=0)

	Scatter of nd rate vs na rate (rates for each burst).

	
fretbursts.burst_plot.scatter_fret_size(d, i=0, which='all', gamma=1, add_naa=False, plot_style=None)

	Scatterplot of FRET efficiency versus burst size.

	
fretbursts.burst_plot.scatter_fret_nd_na(d, i=0, show_fit=False, no_text=False, gamma=1.0, **kwargs)

	Scatterplot of FRET versus gamma-corrected burst size.

	
fretbursts.burst_plot.scatter_fret_width(d, i=0)

	Scatterplot of FRET versus burst width.

	
fretbursts.burst_plot.scatter_naa_nt(d, i=0, alpha=0.5)

	Scatterplot of nt versus naa.

	
fretbursts.burst_plot.scatter_alex(d, i=0, **kwargs)

	Scatterplot of E vs S. Keyword arguments passed to plot.

 FRETBursts plugins

FRETBursts plugins

The module burtlib_ext.py (by default imported as bext) contains extensions
to burstslib.py. It can be though as a simple plugin system for FRETBursts.

Functions here defined operate on fretbursts.burstlib.Data() objects
extending the functionality beyond the core functions and methods defined in
burstlib. This modularization allows to implement new functions without
overloading the fretbursts.burstlib.Data with an high number
of non-core methods.

The type of functions here implemented are quite diverse. A short summary
follows.

	burst_search_and_gate() performs the AND-gate burst search taking
intersection of the bursts detected in two photons streams.

	burst_data() returns a pandas DataFrame with burst data (one burst
per row). Burst data includes sizes, duration, E, S, etc….

	bursts_fitter() and fit_bursts_kde_peak() help to build and
fit histograms and KDEs for E or S.

	calc_mdelays_hist() computes the histogram of the m-delays
distribution of photon intervals.

	moving_window_chunks(): slices the measurement using a moving-window
(along the time axis). Used to follow or detect kinetics.

	join_data() joins different measurements to create a single
“virtual” measurement from a series of measurements.

Finally a few functions deal with burst timestamps:

	get_burst_photons() returns a list of timestamps for each burst.

	ph_burst_stats() compute any statistics (for example mean or median)
on the timestamps of each burst.

	asymmetry() returns a burst “asymmetry index” based on the difference
between Donor and Acceptor timestamps.

	
fretbursts.burstlib_ext.asymmetry(dx, ich=0, func=<function mean>, dropnan=True)

	Compute an asymmetry index for each burst in channel ich.

It computes each burst the difference func({t_D}) - func({t_A})
where func is a function (default mean) that computes some statistics
on the timestamp and {t_D} and {t_A} are the sets of D or A timestamps
in a bursts (during D excitation).

	Parameters

	
	d (Data) – Data() object

	ich (int) – channel index

	func (function) – the function to be used to extract D and A photon
statistics in each bursts.

	Returns

	An arrays of photon timestamps (one array per burst).

	
fretbursts.burstlib_ext.burst_data(dx, include_bg=False, include_ph_index=False, skip_ch=None)

	Return a table (pd.DataFrame) of burst data (one row per burst).

Columns include:

	E and S: FRET and stoichiometry for each burst.

	nd, na, naa, nda: burst counts in DexDem, DexAem, AexAem and
AexDem photon streams.

	t_start, t_stop: time (in seconds) of first and last photon inside
the burst

	width_ms: burst duration in milliseconds

	size_raw: the total uncorrected burst counts in the photon stream
used for burst search

Optional columns include:

	i_start, i_stop: index of burst start and stop relative to the
original timestamps array (requires include_ph_index=True)

	bg_dd, bg_ad, bg_aa, bg_da: background contribution in the
DexDem, DexAem, AexAem, AexDem photon streams (requires
include_bg=True).

If the peak photon-counts in each bursts has been computed (see
fretbursts.burstlib.Data.calc_max_rate()), it will
be included as a column called max_rate.

	Parameters

	
	include_bg (bool) – if True includes additional columns for burst
background (see above). Default False.

	include_ph_index (bool) – if True includes additional two columns for
index of first and last timestamp in each burst. Default False.

	skip_ch (list or None) – List of channels to skip if measurement is
multispot.

	Returns

	A pandas’s DataFrame containing burst data (one row per burst).

	
fretbursts.burstlib_ext.burst_data_period_mean(dx, burst_data)

	Compute mean burst_data in each period.

	Parameters

	
	dx (Data object) – contains the burst data to process

	burst_data (list of arrays) – one array per channel, each array
has one element of “burst data” per burst.

	Returns

	2D of arrays with shape (nch, nperiods).

Example

burst_period_mean(dx, dx.nt)

	
fretbursts.burstlib_ext.burst_search_and_gate(dx, F=6, m=10, min_rate_cps=None, c=-1, ph_sel1=Ph_sel(Dex='DAem', Aex=None), ph_sel2=Ph_sel(Dex=None, Aex='Aem'), compact=False, mute=False)

	Return a Data object containing bursts obtained by and-gate burst-search.

The and-gate burst search is a composition of 2 burst searches performed
on different photon selections. The bursts in the and-gate burst search
are the overlapping bursts in the 2 initial burst searches, and their
duration is the intersection of the two overlapping bursts.

By default the 2 photon selections are D+A photons during D excitation
(Ph_sel(Dex='DAem')) and A photons during A excitation
(Ph_sel(Aex='Aex')).

	Parameters

	
	dx (Data object) – contains the data on which to perform the burst
search. Background estimation must be performed before the search.

	F (float or tuple) – burst search parameter F. If it is a 2-element
tuple, specifies F separately for ph_sel1 and ph_sel2.

	m (int or tuple) – Burst search parameter m. If it is a 2-element
tuple, specifies m separately for ph_sel1 and ph_sel2.

	min_rate_cps (float or tuple) – min. rate in cps for burst detection.
If not None, min_rate_cps overrides any value passed in F.
If a 2-element tuple specifies min_rate_cps separately for
ph_sel1 and ph_sel2. In multispot data, it can also be an
array (or a 2-tuple or arrays) with size equal to the number of
spots.

	c (float) – parameter used set the definition of the rate estimatator.
See c parameter in burstlib.Data.burst_search()
for details.

	ph_sel1 (Ph_sel object) – photon selections used for bursts search 1.

	ph_sel2 (Ph_sel object) – photon selections used for bursts search 2.

	mute (bool) – if True nothing is printed. Default: False.

	Returns

	A new Data object containing bursts from the and-gate search.

See also fretbursts.burstlib.Data.burst_search().

	
fretbursts.burstlib_ext.bursts_fitter(dx, burst_data='E', save_fitter=True, weights=None, gamma=1, add_naa=False, skip_ch=None, binwidth=None, bandwidth=None, model=None, verbose=False)

	Create a mfit.MultiFitter object (for E or S) add it to dx.

A MultiFitter object allows to fit multi-channel data with the same
model.

	Parameters

	
	dx (Data) – Data object containing the FRET data

	save_fitter (bool) – if True save the MultiFitter object in the
dx object with name: burst_data + ‘_fitter’.

	burst_data (string) – name of burst-data attribute (i.e ‘E’ or ‘S’).

	weights (string or None) – kind of burst-size weights.
See fretbursts.fret_fit.get_weights().

	gamma (float) – gamma factor passed to get_weights().

	add_naa (bool) – if True adds naa to the burst size.

	binwidth (float or None) – bin width used to compute the histogram.
If None the histogram is not computed.

	bandwidth (float or None) – bandwidth used to compute the KDE
If None the KDE is not computed.

	model (lmfit.Model object or None) – lmfit Model used for histogram
fitting. If None the histogram is not fitted.

	verbose (bool) – if False avoids printing any output.

	Returns

	The mfit.MultiFitter object with the specified burst-size weights.

	
fretbursts.burstlib_ext.calc_bg_brute(dx, min_ph_delay_list=None, return_all=False, error_metrics='KS')

	Compute background for all the ch, ph_sel and periods.

This function performs a brute-force search of the min ph delay
threshold. The best threshold is the one the minimizes the error
function. The best background fit is the rate fitted using the
best threshold.

	Parameters

	
	min_ph_delay_list (sequence) – sequence of values used for the
brute-force search. Background and error will be computed
for each value in min_ph_delay_list.

	return_all (bool) – if True return all the fitted backgrounds and
error functions. Default False.

	error_metrics (string) – Specifies the error metric to use.
See fretbursts.background.exp_fit() for more details.

	Returns

	Two arrays with best threshold (us) and best background. If
return_all = True also returns the dictionaries containing all the
fitted backgrounds and errors.

	
fretbursts.burstlib_ext.calc_bg_brute_cache(dx, min_ph_delay_list=None, return_all=False, error_metrics='KS', force_recompute=False)

	Compute background for all the ch, ph_sel and periods caching results.

This function performs a brute-force search of the min ph delay
threshold. The best threshold is the one the minimizes the error
function. The best background fit is the rate fitted using the
best threshold.

Results are cached to disk and loaded transparently when needed.
The cache file is an HDF5 file named dx.fname[:-5] + '_BKG.hdf5'.

	Parameters

	
	min_ph_delay_list (sequence) – sequence of values used for the
brute-force search. Background and error will be computed
for each value in min_ph_delay_list.

	return_all (bool) – if True return all the fitted backgrounds and
error functions. Default False.

	error_metrics (string) – Specifies the error metric to use.
See fretbursts.background.exp_fit() for more details.

	force_recompute (bool) – if True, recompute results even if a cache
is found.

	Returns

	Two arrays with best threshold (us) and best background. If
return_all = True also returns the dictionaries containing all the
fitted backgrounds and errors.

	
fretbursts.burstlib_ext.calc_mdelays_hist(d, ich=0, m=10, period=(0, -1), bins_s=(0, 10, 0.02), ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), bursts=False, bg_fit=True, bg_F=0.8)

	Compute histogram of m-photons delays (or waiting times).

	Parameters

	
	dx (Data object) – contains the burst data to process.

	ich (int) – the channel number. Default 0.

	m (int) – number of photons used to compute each delay.

	period (int or 2-element tuple) – index of the period to use. If
tuple, the period range between period[0] and period[1]
(included) is used.

	bins_s (3-element tuple) – start, stop and step for the bins

	ph_sel (Ph_sel object) – photon selection to use.

	Returns

	Tuple of values –

	bin_x (array): array of bins centers

	histograms_y (array): arrays of histograms, contains 1 or 2
histograms (when bursts is False or True)

	bg_dist (random distribution): erlang distribution with same
rate as background (kcps)

	a, rate_kcps (floats, optional): amplitude and rate for an
Erlang distribution fitted to the histogram for
bin_x > bg_mean*bg_F. Returned only if bg_fit is True.

	
fretbursts.burstlib_ext.calc_mean_lifetime(dx, t1=0, t2=inf, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))

	Compute the mean lifetime in each burst.

	Parameters

	
	t1, t2 (floats) – min and max value (in TCSPC bin units) for the
nanotime to be included in the mean

	ph_sel (Ph_sel object) – object defining the photon selection.
See fretbursts.ph_sel for details.

	Returns

	List of arrays of per-burst mean lifetime. One array per channel.

	
fretbursts.burstlib_ext.fit_bursts_kde_peak(dx, burst_data='E', bandwidth=0.03, weights=None, gamma=1, add_naa=False, x_range=(-0.1, 1.1), x_ax=None, save_fitter=True)

	Fit burst data (typ. E or S) by finding the KDE max on all the channels.

	Parameters

	
	dx (Data) – Data object containing the FRET data

	burst_data (string) – name of burst-data attribute (i.e ‘E’ or ‘S’).

	bandwidth (float) – bandwidth for the Kernel Density Estimation

	weights (string or None) – kind of burst-size weights.
See fretbursts.fret_fit.get_weights().

	gamma (float) – gamma factor passed to get_weights().

	add_naa (bool) – if True adds naa to the burst size.

	save_fitter (bool) – if True save the MultiFitter object in the
dx object with name: burst_data + ‘_fitter’.

	x_range (tuple of floats) – min-max range where to search for the peak.
Used to select a single peak in a multi-peaks distribution.

	x_ax (array or None) – x-axis used to evaluate the Kernel Density

	Returns

	An array of max peak positions (one per ch). If the number of
channels is 1 returns a scalar.

	
fretbursts.burstlib_ext.get_burst_photons(d, ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))

	Return a list of arrays of photon timestamps in each burst.

	Parameters

	
	d (Data) – Data() object

	ich (int) – channel index

	ph_sel (Ph_sel) – photon selection. It allows to select timestamps
from a specific photon selection. Example ph_sel=Ph_sel(Dex=’Dem’).
See fretbursts.ph_sel for details.

	Returns

	A list of arrays of photon timestamps (one array per burst).

	
fretbursts.burstlib_ext.histogram_mdelays(d, ich=0, m=10, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), binwidth=0.001, dt_max=0.01, bins=None, inbursts=False)

	Compute histogram of m-photons delays (or waiting times).

	Parameters

	
	dx (Data object) – contains the burst data to process.

	ich (int) – the channel number. Default 0.

	m (int) – number of photons used to compute each delay.

	ph_sel (Ph_sel object) – photon selection to use.

	inbursts (bool) – if True, compute the histogram with only
photons in bursts.

	Returns

	A HistData object containing the computed histogram.

	
fretbursts.burstlib_ext.join_data(d_list, gap=0)

	Joins burst data of different measurements in a single Data object.

Merge a list of Data objects (i.e. a set of different measurements)
into a single Data object containing all the bursts (like it was a
single acquisition).
The Data objects to be merged need to already contain burst data.
The input Data objects are required to have undergone background
estimation (all with the same background period) and burst search.
For each measurement, the time of burst start is offset by the duration
of the previous measurement + an additional gap (which is 0 by
default).

The index of the first/last photon in the burst (istart and iend)
are kept unmodified and refer to the original timestamp array.
The timestamp arrays are not copied: the new Data object will
not contain any timestamp arrays (ph_times_m). This may cause errors when
calling functions that require the timestamps data such as burst search.

The background arrays (bg, bg_dd, etc…) are concatenated. The burst
attribute bp is updated to refer to these new concatenated arrays.
The attributes Lim and Ph_p are concatenated and left unchanged.
Therefore different sections will refer to different original timestamp
arrays. The retuned Data object will have a new attribute i_origin,
containing, for each burst, the index of the original data object
in the list.

	Parameters

	
	d_list (list of Data objects) – the list of measurements to concatenate.

	gap (float) – the time delay (or gap) in seconds to add to each
concatenated measurement.

	Returns

	A Data object containing bursts from the all the objects in d_list.
This object will not contain timestamps, therefore it is possible
to perform burst selections but not a new burst serach.

Example

If d1 and d2 are two measurements to concatenate:

file_list = ['filename1', 'filename2']
d_list = [loader.photon_hdf5(f) for f in file_list]

for dx in d_list:
 loader.alex_apply_period(dx)
 dx.calc_bg(bg.exp_fit, time_s=30, tail_min_us='auto', F_bg=1.7)
 dx.burst_search()

d_merged = bext.join_data(d_list)

d_merged will contain bursts from both input files.

	
fretbursts.burstlib_ext.moving_window_chunks(dx, start, stop, step, window=None, time_zero=0)

	Return a list of Data object, each containing bursts in one time-window.

Each returned Data object contains only bursts lying in the current
time-window. Additionally, the start/stop values of current time-window
are saved in Data’s attributes: name, slice_tstart and slice_tstop.

	Parameters

	
	dx (Data) – the Data() object to be sliced with a moving window.

	start, stop (scalars) – time-range in seconds spanned by the
moving window.

	step (scalar) – window time-shift at each step.

	window (scalar) – window duration. If None, window = step.

	time_zero (scalar) – shift the start/stop times saved in the Data
attributes so that “time zero” falls at time_zero seconds.
Default 0, no shift.

	Returns

	A list of Data objects, one for each window position.

See also: moving_window_dataframe().

	
fretbursts.burstlib_ext.moving_window_dataframe(start, stop, step, window=None, time_zero=0)

	Create a DataFrame for storing moving-window data.

Create and return a DataFrame for storing columns of moving-window data.
Three columns are initialize with “time axis” data: ‘tstart’, ‘tstop’
and ‘tmean’. The returned DataFrame is typically used to store (in new
columns) quantities as function of the moving time-window.
Examples of such quantities are number of bursts, mean burst size/duration,
fitted E peak position, etc.

	Parameters

	
	start, stop (scalars) – range spanned by the moving window.

	step (scalar) – window shift at each “step”.

	window (scalar) – window duration. If None, window = step.

	Returns

	DataFrame with 3 columns (tstart, tstop, tmean), one row for each
window position.

See also: moving_window_chunks().

	
fretbursts.burstlib_ext.moving_window_startstop(start, stop, step, window=None)

	Computes list of (start, stop) values defining a moving-window.

	Parameters

	
	start, stop (scalars) – range spanned by the moving window.

	step (scalar) – window shift at each “step”.

	window (scalar) – window duration. If None, window = step.

	Returns

	A list of (start, stop) values for the defined moving-window range.

	
fretbursts.burstlib_ext.ph_burst_stats(d, ich=0, func=<function mean>, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))

	Applies function func to the timestamps of each burst.

	Parameters

	
	d (Data) – Data() object

	ich (int) – channel index

	func (function) – a function that take an array of burst-timestamps
and return a scalar. Default numpy.mean.

	ph_sel (Ph_sel) – photon selection. It allows to select timestamps
from a specific photon selection. Default Ph_sel(‘all’).
See fretbursts.ph_sel for details.

	Returns

	An array containing per-burst timestamp statistics.

 FRETBursts Reference Manual

FRETBursts Reference Manual

Contents:

	Loader functions
	List of loader functions

	Load data manually

	The “Data()” class
	“Data()” class: description and attributes

	Summary information

	Analysis methods

	Burst corrections
	Correction factors

	Correction methods

	Burst selection methods

	Fitting methods

	Data access methods

	Photon selections

	Background estimation
	background.py

	Low-level background fit functions

	Burst selection
	Selection functions

	Fit framework
	MultiFitter reference documentation
	The MultiFitter class

	Model factory functions

	Utility functions

	Overview

	Fitting E or S histograms

	Lmfit introduction

	Legacy Fit functions
	Gaussian fitting

	Exponential fitting

	Direct FRET fitting

	Plotting Data
	Timetrace and ratetrace plots

	1D Histograms
	Bursts: ratiometric quantities

	Bursts: tail distributions

	Others

	ALEX plots

	Scatter plots

	Burst Search in FRETBursts
	Defining the rate estimator

	Conventions in burst search

	The Core Algorithm

	Burst Fusion

	Low-level burst search functions

	Photon rates functions

	FRETBursts plugins

	Why an HDF5-based smFRET file format
	What is HDF5?

	The HDF5 ecosystem

	Why HDF5 and smFRET?

	HDF5 in FRETBursts
	HDF5-based smFRET file format

	FRET Correction Formulas

	Description of the files
	burstlib.py

	loader.py

	select_bursts.py

	burst_plot.py

	background.py

	phtools (folder)

	dataload (folder)

	fit (folder)

	FRETBursts Cython extensions

 FRETBursts Release Notes

FRETBursts Release Notes

Version 0.6.5 (Aug. 2017)

This is a minor release with an important bug fix for histograms plots
and other tweaks mostly for PAX. New “short notebooks” for common tasks
have also been added.

Bug fixes:

	Fix histograms offset by half bin when using matplotlib 2.x.
(see commit d3102e [https://github.com/OpenSMFS/FRETBursts/commit/d3102e65e5c79c7a95c357d7d55ee273dc3ce87f]).

	Fix BurstsGap giving an error when being sliced
(see #62 [https://github.com/tritemio/FRETBursts/pull/64]).

Other changes:

	Kinetics: better handling of time_zero in moving_window functions
(see c25b68 [https://github.com/OpenSMFS/FRETBursts/commit/c25b682a191a72fe2a6835d49bafc47acd57bc36]).

	Multispot: Add argument skip_ch to Data.collapse and to dplot.

	Plots: use vmin=1 by default in alex_jointplot and hexbin_alex.

	PAX: rewrote burst size and correction factors to be more clear and general
(see Data.burst_sizes_pax_ich)

	Plots: spread burst labels to reduce overlapping when plotting burst
info with timetrace.
See the new example notebook for timetrace plotting.

	
	New notebooks:

	
	Example - Plotting timetraces with bursts [https://github.com/OpenSMFS/FRETBursts/blob/master/notebooks/Example%20-%20Plotting%20timetraces%20with%20bursts.ipynb]

	Example - Selecting FRET populations [https://github.com/OpenSMFS/FRETBursts/blob/master/notebooks/Example%20-%20Selecting%20FRET%20populations.ipynb]

	Example - FRET histogram fitting [https://github.com/OpenSMFS/FRETBursts/blob/master/notebooks/Example%20-%20FRET%20histogram%20fitting.ipynb]

Version 0.6.4 (Jul. 2017)

This release adds support for periodic acceptor excitation (PAX)
measurements. PAX is similar to μs-ALEX, with the difference that only the
A laser is alternated (see references [pax] and [48spot]).
There are also a few minor bug fixes and better support
for 48-spot data.

To update to the latest version type conda install fretbursts -c conda-forge.
For installation instructions see Getting Started.

The list of changes include:

	Added PAX support

	Workaround for a numpy.histogram issue [https://github.com/numpy/numpy/issues/7503] when input contains NaNs

	bext.burst_data(): bugfix, add tests and improve handling of multispot data

	Added apionly argument to init_notebook() for setting up the notebook
plots without changing any plot style (see 958824 [https://github.com/OpenSMFS/FRETBursts/commit/958824123152fd618d6811153bfbed64722fffd7]).

	Support “empty” channels in multispot data.

	Improve plots for 48-spot data.

	
	Refactoring of alex_jointplot.

	
	Allow using custom Data fields for E and S in alex_jointplot.

	Remove rarely used arguments

	Set axis limits by default

	Added a new notebook [http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/Example%20-%20Customize%20the%20us-ALEX%20histogram.ipynb]
showing how to customize alex_jointplot plots.

	Improved normalization of exponential curve representing the
fitted background in hist_bg
(see Issue 61 [https://github.com/tritemio/FRETBursts/issues/61]).
Many thanks to Danielis Rutkauskas for reporting the issue.

	Removed shortcut (underscore) syntax for single-spot. Code like
d.E_ needs to be changed to d.E[0].
This syntax was causing difficulties during developing new features for PAX.
Please report if you would like for the syntax to be reintroduced.

	pax

	Doose et al. European Biophysics Journal 36(6) p.669-674, 2007.
DOI:10.1007/s00249-007-0133-7 [https://doi.org/10.1007/s00249-007-0133-7]

	48spot

	Ingargiola et al. bioRxiv 156182, 2017.
DOI:10.1101/156182 [https://doi.org/10.1101/156182]

Version 0.6.3 (Apr. 2017)

A few more small fixes in this release. If you have any installation
issue please report it on github.

	Import OpenFileDialog when FRETBursts is imported (as in versions < 0.6.2)

	Fix loading SM files with numpy 1.12

	Use phconvert to decode SM files

Version 0.6.2 (Apr. 2017)

This is a technical release that removes the hard dependency on QT
and solves some installation issues due to QT pinning on conda-forge.

Version 0.6.1 (Apr. 2017)

For this version of FRETBursts, conda packages are distributed for
python 2.7, 3.5, 3.6 and numpy 1.11 and 1.12. FRETBursts still works
with python 3.4 but conda packages are not provided anymore.
Python 2.7 is now deprecated. Support for python 2.7 will be removed
in a future version.

The current release includes the following changes:

	SangYoon Chung (@chungjjang80) found that the L argument in
burst search was ignored and submitted a fix to the problem in
PR #57 [https://github.com/tritemio/FRETBursts/pull/57].
Tests were added to avoid future regressions.

	Fix access to the deprecated background attributes (introduced in 0.6).
See b850a5 [https://github.com/OpenSMFS/FRETBursts/commit/b850a595033c27cc66f8f4a748b1d0bf68366750].

	Add plot wrapper for 16-ch data.

	Improved example notebook showing how to export burst data.
See Exporting Burst Data [https://github.com/OpenSMFS/FRETBursts/blob/49a45dd815b40602c5e754a162c66a837bbd2477/notebooks/Example%20-%20Exporting%20Burst%20Data%20Including%20Timestamps.ipynb].

	Re-enable background rate caching.
See PR #53 [https://github.com/tritemio/FRETBursts/pull/53].

	Support Path objects as filename in loader.photon_hdf5().
See 201b5c [https://github.com/OpenSMFS/FRETBursts/commit/201b5c089eca0f0867ceb453c3c111c54a21704d].

	Improve Ph_sel string representation, added factory method Ph_sel.from_str
and added new tests.
See 3dc5f0 [https://github.com/OpenSMFS/FRETBursts/commit/3dc5f078c678ca3c806f49b27223a2e1cd6df64a].

Version 0.6 (Jan. 2017)

	Improvements to the layout of 48-spot plots.

	Simplify background computation avoiding useless recomputations.
This results in 3x speed increase in background computation
for measurement loaded with ondisk=True and 30% speed increase
when using ondisk=False.
Now all background rates are stored in the dictionary Data.bg,
while the mean background rate in the dictionary Data.bg_mean.
The old attributes Data.bg_* and Data.rate_* have been deprecated
and will be removed in a future release (see below).

	Fix loading files with ondisk=True. With this option timestamps are not
kept in RAM but loaded spot-by-spot when needed. This option has no effect
on single-spot measurements but will save RAM in multi-spot measurements.

	Add new plot functions
hist_interphoton [http://fretbursts.readthedocs.io/en/latest/plots.html#fretbursts.burst_plot.hist_interphoton]
and hist_interphoton_single [http://fretbursts.readthedocs.io/en/latest/plots.html#fretbursts.burst_plot.hist_interphoton_single]
to plot the interphoton delay distribution. In previous versions the
function hist_bg (and hist_bg_single) did the same plot but required
the background to be fitted. hist_interphoton* do not require any prior
background fit and also have a cleaner and improved API.

	Detect and handle smFRET files (no ALEX) with counts not only in D or A channels
(f0e33d [https://github.com/OpenSMFS/FRETBursts/commit/f0e33d855d6dfb31c89f282b249f80d845472124]).

	Better error message when a burst filtering function fails
(c7826d [https://github.com/OpenSMFS/FRETBursts/commit/c7826d5190a034578b1fdb9c4325f8fbfe2c01d4]).

Backward-incompatible changes

Effect on burst search

Version 0.6 introduced a small change in how the auto-threshold
for background estimation is computed. This results in slightly different
background rates. As a consequence, burst searches setting a threshold
as function of the background, will set a slightly different threshold and
will find different number of bursts. The difference is not dramatic,
but can result in slight numeric changes in estimated parameters.

Details of auto-threshold changes

The refactor included a change in how the background is computed when using
tail_min_us='auto'. As before, with this setting, the background is
estimated iteratively in two steps. A first raw estimation with a fixed
threshold (250us), and second estimation with a threshold function of the
rate computed in the first step. Before version 0.6, the first step estimated
a single rate for the whole measurement. Now the first-step estimation is
performed in each background period separately. As before, the second step
computes the background separately in each background period.
This change was motivated by the need to simplify the internal logic
of background estimation, and to increase the computation efficiency
and accuracy.

Background attributes

The background refactor resulted in an incompatible change in the
Data.bg attribute. Users upgrading to version 0.6, may need to replace
Data.bg with Data.bg[Ph_sel('all')] in their notebooks. Note that
no official FRETBursts notebook was using Data.bg, so most users will not be
affected.

Compatibility layer

All the old background-related attributes (bg_dd, bg_ad, bg_da, bg_aa,
rate_dd, rate_ad, rate_da, rate_aa, rate_m) are still present but deprecated.
The same data is now contained in the dictionaries
Data.bg and Data.bg_mean.
When using the deprecated attributes, a message will indicate the new syntax.
If you see the deprecation warning, please update the notebook
to avoid future errors.

Details of changed attributes

Before version 0.6, Data.bg contained background rates
fitted for all-photons stream. Data.bg was a list of arrays:
one array per spot, one array element per background period.
In version 0.6+, Data.bg contains the background rates for all the fitted
photon streams. Data.bg is now a dict using Ph_sel objects as keys.
Each dict entry is a list of array, one array per spot and one array element
per background period. For more details please refer to the following
documentation Data.bg and Data.bg_mean.

Version 0.5.9 (Sep. 2016)

	Added support for pyqt and qt 5+.

	Fix burst selection with multispot data.
See this commit [https://github.com/OpenSMFS/FRETBursts/commit/f05e807cbd032e748580af9cc310585bcde97e40].

There may still be some glitches when using
the QT5 GUIs from the notebook, but installing (and importing) FRETBursts
does not require QT4 anymore (QT5 is the current default in anaconda).
Please report any issue.

Version 0.5.7 (Sep. 2016)

Refactoring and expansion of gamma and beta corrections.
Briefly, in all the places where corrected burst sizes are being computed,
we removed the gamma1 argument and added a flag donor_ref.
Additionally, the values Data.S are now beta corrected.

These changes affected
several components as described below.

Data Class

	Methods Data.burst_sizes_ich and Data.burst_sizes now accept the
arguments gamma, beta and donor_ref. The argument gamma1
was removed.
The two conventions of corrected burst sizes are chosen with the boolean
flag donor_ref.
See the burst_sizes_ich docs [http://fretbursts.readthedocs.io/en/latest/data_class.html?highlight=get_naa#fretbursts.burstlib.Data.burst_sizes_ich]
for details.

	New method get_naa_corrected returns the array of naa burst counts
corrected with the passed gamma and beta values. Like for the burst
size, the argument donor_ref selects the convention for the correction.
See the get_naa_corrected docs [http://fretbursts.readthedocs.io/en/latest/data_class.html?highlight=get_naa#fretbursts.burstlib.Data.get_naa_corrected]
for details.

	A new Data attribute beta (default: 1) stores a beta value that is used
to compute the corrected S. This value is never implicitly used to compute
corrected burst sizes or naa (for these a beta arguments needs to be
passed explicitly).

Plot functions

Plot functions hist_size and hist_brightness accept the new arguments
for corrected burst size (gamma, beta and donor_ref).

Burst selection

Burst selection by size and naa accept the new arguments
for corrected burst size (gamma, beta and donor_ref).

Burst Weights

Functions that accept weights don’t accept the gamma1 argument anymore,
but they don’t (yet) support the arguments donor_ref and beta.
As a result, for the purpose of weighting, there is only one expression
for corrected burst size (na + gamma*nd), with the option to add naa
but without beta correction.

All these changes are covered by unit tests.

Installation via conda-forge

Since version 0.5.6 we started distributing conda packages for FRETBursts
through the conda-forge [https://conda-forge.github.io/] channel
(a community supported repository, as opposed to a private channel we were using before).
To install or update FRETBursts you should now use:

conda install fretbursts -c conda-forge

Using the conda-forge channel simplifies our release process since
their infrastructure automatically builds packages for multiple
platforms and python versions. Please report any issues in installing
or upgrading FRETBursts on the
GitHub Issues [https://github.com/OpenSMFS/FRETBursts/issues] page.

For more detailed installation instructions see the
Getting Started [http://fretbursts.readthedocs.io/en/latest/getting_started.html]
documentation.

Version 0.5.6

For older release notes see GitHub Releases Page [https://github.com/tritemio/FRETBursts/releases/].

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Single-molecule FRET burst analysis

_static/2cde_joint.png
FRET-2CDE

50 §

40

2CDE

Bursts: 836

_static/BVA_joint.png
0.35
0.30 A
0.25 1
5 0.20
0.15 1
0.10

0.05 -

0.00

BVA

Bursts: 1762

0.0

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/alex_jointplot_fit.png
PDF

Bursts: 5790

20

15

10

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/fret_hist_fit.png
5799

, T=759us, #bu

¢c_NTP_20dT_0.5GndCl

UuLRpit

data_0023

o=
S
7
|||||||||||||||| _*.-|||||||||||||
s
AN V2
~ 7/
A aa—
Y =7
L /] PGS
/ _.r N
| P AY
-
\\W\n
Pl
/
|+|||_ |||||||||||||||||||||||||
N _
/
LS -
~ T el
1 -
....... B e R N—
™=~ SO
T =
T~
o o o o o o
o Te] o Yo o Yol
™ N N ~ ~

s)sing #

1.0

0.8

0.6

0.4

0.2

0.0

_static/favicon.png

_static/minus.png

_static/plus.png

_static/hist_bg_fit.png
10"

10

data_0023uLRpitc_ NTP_20dT_0.5GndCl, T=759us, #bu=5790

g e All-ph

—— All-ph, 2.19 kecps
© DexDem

—— DexDem, 0.57 kcps
o DexAem

DexAem, 0.98 kcps

o AexAem

AexAem, 0.55 kcps

Inter-photon delays (ms)

_static/logo.png
=

_static/timetrace_bursts.png
3547

| , T=1250ys, #bu=

¢c_NTP_20dT_0.5GndCl

pit

data_0023uLR

0.7 0.8